메뉴 건너뛰기




Volumn 22, Issue 1-2, 2008, Pages 427-443

Algebro-geometric methods for hard ball systems

Author keywords

Algebro geometric methods; Boltzmann Sinai ergodic hypothesis; Ergodicity; Hard ball systems; Hyperbolicity; Semi dispersing billiards

Indexed keywords


EID: 53949103964     PISSN: 10780947     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcds.2008.22.427     Document Type: Conference Paper
Times cited : (5)

References (32)
  • 2
    • 53949096453 scopus 로고    scopus 로고
    • P. Batchourine, On the structure of singularity submanifolds of dispersing billiards, preprint, arXiv:0505620
    • P. Batchourine, On the structure of singularity submanifolds of dispersing billiards, preprint, arXiv:0505620
  • 4
    • 0031549891 scopus 로고    scopus 로고
    • Nowhere dispersing 3D billiards with non-vanishing Lyapunov exponents
    • L. A. Bunimovich and J. Rehacek, Nowhere dispersing 3D billiards with non-vanishing Lyapunov exponents, Commun. Math. Phys., 189 (1997), 729-757.
    • (1997) Commun. Math. Phys , vol.189 , pp. 729-757
    • Bunimovich, L.A.1    Rehacek, J.2
  • 6
    • 0036435079 scopus 로고    scopus 로고
    • Multi-dimensional semi-dispersing billiards: Singularities and the fundamental theorem
    • P. Bálint, N. Chernov, D. Szász and I. P. Tóth, Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem, Annales Henri Poincaré, 3 (2002), 451-482.
    • (2002) Annales Henri Poincaré , vol.3 , pp. 451-482
    • Bálint, P.1    Chernov, N.2    Szász, D.3    Tóth, I.P.4
  • 7
    • 0000182012 scopus 로고
    • The fundamental theorem of the theory of scattering billiards
    • A. Bunimovich and Ya. G. Sinai, The fundamental theorem of the theory of scattering billiards, Mat. Sbornik, 90 (1973), 415-431.
    • (1973) Mat. Sbornik , vol.90 , pp. 415-431
    • Bunimovich, A.1    Sinai, Y.G.2
  • 8
    • 0012097571 scopus 로고
    • A universal instability of many-dimensional oscillator systems
    • B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep., 52 (1979), 263-379.
    • (1979) Phys. Rep , vol.52 , pp. 263-379
    • Chirikov, B.V.1
  • 9
    • 84878057601 scopus 로고    scopus 로고
    • Hyperbolic billiards and statistical physics
    • N. Chernov and D. Dolgopyat, Hyperbolic billiards and statistical physics, Proceedings ICM-2006, II. (2006), 1679-1704.
    • (2006) Proceedings ICM-2006 , vol.2 , pp. 1679-1704
    • Chernov, N.1    Dolgopyat, D.2
  • 10
    • 34547280408 scopus 로고    scopus 로고
    • Flow-invariant hypersurfaces in semi-dispersing billiards
    • N. Chernov and N. Simányi, Flow-invariant hypersurfaces in semi-dispersing billiards, Annales Henri Poincaré, 8 (2007), 475-483.
    • (2007) Annales Henri Poincaré , vol.8 , pp. 475-483
    • Chernov, N.1    Simányi, N.2
  • 12
    • 0003280184 scopus 로고
    • Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities
    • A. Katok and J.-M. Strelcyn, "Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities," Lecture Notes in Mathematics, 1222, 1986.
    • (1986) Lecture Notes in Mathematics , vol.1222
    • Katok, A.1    Strelcyn, J.-M.2
  • 13
    • 0000059523 scopus 로고
    • A "transversal" fundamental theorem for semi-dispersing billiards
    • A. Krámli, N. Simányi and D. Szasz, A "transversal" fundamental theorem for semi-dispersing billiards, Commun. Math. Phys., 129 (1990), 535-560.
    • (1990) Commun. Math. Phys , vol.129 , pp. 535-560
    • Krámli, A.1    Simányi, N.2    Szasz, D.3
  • 15
    • 84961291543 scopus 로고
    • Characteristic exponents and smooth ergodic theory
    • Ya. G. Pesin, Characteristic exponents and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-112.
    • (1977) Russian Math. Surveys , vol.32 , pp. 55-112
    • Pesin, Y.G.1
  • 16
    • 84971972535 scopus 로고
    • Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties
    • Ya. G. Pesin, Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergodic Th. & Dynam. Sys., 12 (1992), 123-151.
    • (1992) Ergodic Th. & Dynam. Sys , vol.12 , pp. 123-151
    • Pesin, Y.G.1
  • 17
    • 0001200214 scopus 로고
    • On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics
    • Ya. G. Sinai, On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics, Soviet Math. Dokl., 4 (1963), 1818-1822.
    • (1963) Soviet Math. Dokl , vol.4 , pp. 1818-1822
    • Sinai, Y.G.1
  • 19
    • 0000616278 scopus 로고
    • The K-property of N billiard balls
    • II
    • N. Simányi, The K-property of N billiard balls, Invent. Math., I. 108 (1992), 521-548, II.
    • (1992) Invent. Math , vol.1 , Issue.108 , pp. 521-548
    • Simányi, N.1
  • 20
    • 53949115848 scopus 로고    scopus 로고
    • 110 (1992), 151-172 (1181821).
    • 110 (1992), 151-172 (1181821).
  • 21
    • 29644433764 scopus 로고    scopus 로고
    • Hard ball systems and semi-dispersive billiards: Hyperbolicity and ergodicity
    • N. Simányi, Hard ball systems and semi-dispersive billiards: hyperbolicity and ergodicity, Encyclopaedia of Mathematical Sciences, 101 (2000), 51-88.
    • (2000) Encyclopaedia of Mathematical Sciences , vol.101 , pp. 51-88
    • Simányi, N.1
  • 22
    • 0035981913 scopus 로고    scopus 로고
    • The complete hyperbolicity of cylindric billiards
    • N. Simányi, The complete hyperbolicity of cylindric billiards, Ergodic Th. & Dynam. Sys., 22 (2002), 281-302.
    • (2002) Ergodic Th. & Dynam. Sys , vol.22 , pp. 281-302
    • Simányi, N.1
  • 23
    • 2442538136 scopus 로고    scopus 로고
    • Proof of the ergodic hypothesis for typical hard ball systems
    • N. Simányi, Proof of the ergodic hypothesis for typical hard ball systems, Annales H. Poincaré, 5 (2004), 203-233.
    • (2004) Annales H. Poincaré , vol.5 , pp. 203-233
    • Simányi, N.1
  • 24
    • 53949123703 scopus 로고    scopus 로고
    • N. Simányi, Conditional proof of the Boltzmann-Sinai ergodic hypothesis, (Assuming the hyperbolicity of typical singular orbits.), 2007. arXiv:0605358
    • N. Simányi, Conditional proof of the Boltzmann-Sinai ergodic hypothesis, (Assuming the hyperbolicity of typical singular orbits.), 2007. arXiv:0605358
  • 26
    • 0009281855 scopus 로고
    • Ergodic properties of some systems of two-dimensional disks and three-dimensional balls
    • Ya. G. Sinai and N. I. Chernov, Ergodic properties of some systems of two-dimensional disks and three-dimensional balls, Usp. Mat. Nauk, 42 (1987), 153-174.
    • (1987) Usp. Mat. Nauk , vol.42 , pp. 153-174
    • Sinai, Y.G.1    Chernov, N.I.2
  • 27
    • 0033241652 scopus 로고    scopus 로고
    • Hard ball systems are completely hyperbolic
    • N. Simányi and D. Szász, Hard ball systems are completely hyperbolic, Annals of Mathematics, 149 (1999), 35-96.
    • (1999) Annals of Mathematics , vol.149 , pp. 35-96
    • Simányi, N.1    Szász, D.2
  • 28
    • 0034421404 scopus 로고    scopus 로고
    • Non-integrability of cylindric billiards and transitive Lie-group actions
    • N. Simányi and D. Szász, Non-integrability of cylindric billiards and transitive Lie-group actions, Ergodic Th. & Dynam. Sys., 20 (2000), 593-610.
    • (2000) Ergodic Th. & Dynam. Sys , vol.20 , pp. 593-610
    • Simányi, N.1    Szász, D.2
  • 29
    • 0002298909 scopus 로고
    • Ergodicity of classical billiard balls
    • D. Szász, Ergodicity of classical billiard balls, Physica A., 194 (1993), 86-92.
    • (1993) Physica A , vol.194 , pp. 86-92
    • Szász, D.1
  • 30
    • 1542574947 scopus 로고    scopus 로고
    • D. Szász, Boltzmann's ergodic hypothesis, a conjecture for centuries, Studia Sci. Math. Hung., 31 (1996), 299-322. (Reprinted in [30], 423-446).
    • D. Szász, Boltzmann's ergodic hypothesis, a conjecture for centuries, Studia Sci. Math. Hung., 31 (1996), 299-322. (Reprinted in [30], 423-446).
  • 32
    • 0032348050 scopus 로고    scopus 로고
    • Statistical properties of dynamical systems with some hyperbolicity
    • Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math., 147 (1998), 585-650.
    • (1998) Ann. of Math , vol.147 , pp. 585-650
    • Young, L.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.