-
1
-
-
0036435079
-
Multi-dimensional semi-dispersing billiards: Singularities and the fundamental theorem
-
P. Balint, N. Chernov, D. Szasz, and I. P. Toth, Multi-dimensional semi-dispersing billiards: singularities and the fundamental theorem, Ann. H. Poincaré 3 (2002), 451-482.
-
(2002)
Ann. H. Poincaré
, vol.3
, pp. 451-482
-
-
Balint, P.1
Chernov, N.2
Szasz, D.3
Toth, I.P.4
-
2
-
-
21244435939
-
Geometry of multidimensional dispersing billiars
-
P. Balint, N. Chernov, D. Szasz, and I. P. Toth, Geometry of multidimensional dispersing billiars, Astérisque 286 (2003), 119-150.
-
(2003)
Astérisque
, vol.286
, pp. 119-150
-
-
Balint, P.1
Chernov, N.2
Szasz, D.3
Toth, I.P.4
-
3
-
-
21344496897
-
Statistical properties of the periodic Lorentz gas. Multidimensional case
-
N. Chernov, Statistical properties of the periodic Lorentz gas. Multidimensional case, J. Stat. Phys. 74 (1994), 11-53.
-
(1994)
J. Stat. Phys
, vol.74
, pp. 11-53
-
-
Chernov, N.1
-
4
-
-
0000612131
-
Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems
-
A. Katok and K. Burns, Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems, Ergod. Th. Dyn. Syst. 14 (1994), 757-785.
-
(1994)
Ergod. Th. Dyn. Syst
, vol.14
, pp. 757-785
-
-
Katok, A.1
Burns, K.2
-
5
-
-
0000059523
-
A "transversal" fundamental theorem for semi-dispersing billiards
-
A. Krámli, N. Simányi & D. Szász, A "transversal" fundamental theorem for semi-dispersing billiards, Comm. Math. Phys. 129 (1990), 535-560
-
(1990)
Comm. Math. Phys
, vol.129
, pp. 535-560
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
6
-
-
0002884213
-
The K-property of three billiard balls
-
A. Krámli, N. Simányi &: D. Szász, The K-property of three billiard balls, Ann. Math. 133 (1991), 37-72
-
(1991)
Ann. Math
, vol.133
, pp. 37-72
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
7
-
-
0001027451
-
The K-property of four billiard balls
-
A. Krámli, N. Simányi &: D. Szász, The K-property of four billiard balls, Comm. Math. Phys. 144 (1992), 107-142.
-
(1992)
Comm. Math. Phys
, vol.144
, pp. 107-142
-
-
Krámli, A.1
Simányi, N.2
Szász, D.3
-
8
-
-
34547301723
-
-
C. Liverani and M. Wojtkowski, Ergodicity in Hamiltonian systems, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.) 4, Springer, Berlin (1995), 130-202.
-
C. Liverani and M. Wojtkowski, Ergodicity in Hamiltonian systems, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.) 4, Springer, Berlin (1995), 130-202.
-
-
-
-
9
-
-
0000616278
-
The K-property of N billiard balls I
-
N. Simányi, The K-property of N billiard balls I, Invent. Math. 108 (1992), 521-548.
-
(1992)
Invent. Math
, vol.108
, pp. 521-548
-
-
Simányi, N.1
-
10
-
-
0000944602
-
The K-property of N billiard balls II
-
N. Simányi, The K-property of N billiard balls II, Invent. Math. 110 (1992), 151-172.
-
(1992)
Invent. Math
, vol.110
, pp. 151-172
-
-
Simányi, N.1
-
11
-
-
0033241652
-
Hard ball systems are completely hyperbolic
-
N. Simányi & D. Szász, Hard ball systems are completely hyperbolic, Ann. Math. 149 (1999), 35-96.
-
(1999)
Ann. Math
, vol.149
, pp. 35-96
-
-
Simányi, N.1
Szász, D.2
-
12
-
-
0035981913
-
The Complete hyperbolicity of cylindric billiards
-
N. Simányi, The Complete hyperbolicity of cylindric billiards, Ergod. Th. Dynam. Syst. 22 (2002), 281-302.
-
(2002)
Ergod. Th. Dynam. Syst
, vol.22
, pp. 281-302
-
-
Simányi, N.1
-
13
-
-
18744435593
-
Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems
-
N. Simányi Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems, Invent. Math. 154 (2003), 123-178.
-
(2003)
Invent. Math
, vol.154
, pp. 123-178
-
-
Simányi, N.1
-
14
-
-
2442538136
-
Proof of the ergodic hypothesis for typical hard ball systems
-
N. Simányi Proof of the ergodic hypothesis for typical hard ball systems, Ann. H. Poincaré 5 (2004), 203-233.
-
(2004)
Ann. H. Poincaré
, vol.5
, pp. 203-233
-
-
Simányi, N.1
-
15
-
-
0001738670
-
On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics
-
Ya. G. Sinai, On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics, Dokl. Akad. Nauk SSSR, 153 (1963), 1261-1264.
-
(1963)
Dokl. Akad. Nauk SSSR
, vol.153
, pp. 1261-1264
-
-
Sinai, Y.G.1
-
16
-
-
84927896522
-
Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards
-
Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Russ. Math. Surv. 25 (1970), 137-189.
-
(1970)
Russ. Math. Surv
, vol.25
, pp. 137-189
-
-
Sinai, Y.G.1
-
17
-
-
34547330585
-
-
Ya. G. Sinai, Development of Krylov's ideas, Afterword to N.S. Krylov, Works on the foundations of statistical physics. Princeton U. Press, Princeton, N. J. (1979), 239-281.
-
Ya. G. Sinai, Development of Krylov's ideas, Afterword to N.S. Krylov, Works on the foundations of statistical physics. Princeton U. Press, Princeton, N. J. (1979), 239-281.
-
-
-
-
18
-
-
0041133502
-
Entropy of a gas of hard spheres with respect to the group of space-time translations, Trudy Sem
-
in Russian
-
Ya. G. Sinai and N. I. Chernov, Entropy of a gas of hard spheres with respect to the group of space-time translations, Trudy Sem. Petrovskogo, 8 (1982), 218-238 (in Russian),
-
(1982)
Petrovskogo
, vol.8
, pp. 218-238
-
-
Sinai, Y.G.1
Chernov, N.I.2
-
19
-
-
34547309984
-
-
and in: Dynamical Systems, Ed. by Ya. Sinai, Adv. Series in Nonlin. Dynam. 1, 373-390 (in English).
-
and in: Dynamical Systems, Ed. by Ya. Sinai, Adv. Series in Nonlin. Dynam. 1, 373-390 (in English).
-
-
-
-
20
-
-
34547313982
-
-
unpublished manuscript, a draft version of [20
-
Ya. G. Sinai and N. I. Chernov, unpublished manuscript, a draft version of [20].
-
-
-
Sinai, Y.G.1
Chernov, N.I.2
-
21
-
-
84956132011
-
Ergodic properties of some systems of 2-dimensional discs and 3-dimensional, spheres
-
Ya. G. Sinai and N. I. Chernov, Ergodic properties of some systems of 2-dimensional discs and 3-dimensional, spheres, Russ. Math. Surv. 42 (1987), 181-207.
-
(1987)
Russ. Math. Surv
, vol.42
, pp. 181-207
-
-
Sinai, Y.G.1
Chernov, N.I.2
|