-
1
-
-
32044434206
-
-
SMALBC 1613-6810 10.1002/smll.200500201
-
A. Troisi and M. A. Ratner, Small SMALBC 1613-6810 10.1002/smll.200500201 2, 172 (2006).
-
(2006)
Small
, vol.2
, pp. 172
-
-
Troisi, A.1
Ratner, M.A.2
-
2
-
-
33947272067
-
-
NNAABX 1748-3387 10.1038/nnano.2006.130
-
N. J. Tao, Nat. Nanotechnol. NNAABX 1748-3387 10.1038/nnano.2006.130 1, 173 (2006).
-
(2006)
Nat. Nanotechnol.
, vol.1
, pp. 173
-
-
Tao, N.J.1
-
3
-
-
52949129065
-
-
edited by A. V. Narlikar and Y. Y. Fu (Oxford University Press, London
-
G. Kirczenow, The Oxford Handbook of Nanoscience and Technology: Volume I, edited by, A. V. Narlikar, and, Y. Y. Fu, (Oxford University Press, London, in press).
-
The Oxford Handbook of Nanoscience and Technology: Volume I
-
-
Kirczenow, G.1
-
5
-
-
84986665179
-
-
0022-2720
-
J. H. Coombs, J. K. Gimzewski, B. Reihl, J. K. Sass, and R. R. Schlittler, J. Microsc. 152, 325 (1988). 0022-2720
-
(1988)
J. Microsc.
, vol.152
, pp. 325
-
-
Coombs, J.H.1
Gimzewski, J.K.2
Reihl, B.3
Sass, J.K.4
Schlittler, R.R.5
-
7
-
-
22244461409
-
-
APPLAB 0003-6951 10.1063/1.103154
-
D. L. Abraham, A. Veider, C. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.103154 56, 1564 (1990).
-
(1990)
Appl. Phys. Lett.
, vol.56
, pp. 1564
-
-
Abraham, D.L.1
Veider, A.2
Schönenberger, C.3
Meier, H.P.4
Arent, D.J.5
Alvarado, S.F.6
-
8
-
-
11544370874
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.81.1857
-
A. Downes and M. E. Welland, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81.1857 81, 1857 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 1857
-
-
Downes, A.1
Welland, M.E.2
-
9
-
-
0000283427
-
-
PYLAAG 0375-9601 10.1016/0375-9601(90)90903-2
-
I. I. Smolyaninov and M. S. Khaikin, Phys. Lett. A PYLAAG 0375-9601 10.1016/0375-9601(90)90903-2 149, 410 (1990).
-
(1990)
Phys. Lett. a
, vol.149
, pp. 410
-
-
Smolyaninov, I.I.1
Khaikin, M.S.2
-
10
-
-
0027690998
-
-
SCIEAS 0036-8075 10.1126/science.262.5138.1425
-
R. Berndt, R. Gaisch, J. Gimzewski, B. Reihl, R. Schlittler, W. Schneider, and M. Tschudy, Science SCIEAS 0036-8075 10.1126/science.262.5138. 1425 262, 1425 (1993).
-
(1993)
Science
, vol.262
, pp. 1425
-
-
Berndt, R.1
Gaisch, R.2
Gimzewski, J.3
Reihl, B.4
Schlittler, R.5
Schneider, W.6
Tschudy, M.7
-
11
-
-
23444459321
-
-
SCIEAS 0036-8075 10.1126/science.262.5142.2012
-
E. Flaxer, O. Sneh, and O. Cheshnovsky, Science SCIEAS 0036-8075 10.1126/science.262.5142.2012 262, 2012 (1993).
-
(1993)
Science
, vol.262
, pp. 2012
-
-
Flaxer, E.1
Sneh, O.2
Cheshnovsky, O.3
-
12
-
-
19244371387
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.86.83
-
G. E. Poirier, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86. 83 86, 83 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 83
-
-
Poirier, G.E.1
-
13
-
-
0035939433
-
-
APPLAB 0003-6951 10.1063/1.1383570
-
F. Touhari, E. J. A. Stoffels, J. W. Gerristsen, H. V. Kempen, and P. Callant, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1383570 79, 527 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.79
, pp. 527
-
-
Touhari, F.1
Stoffels, E.J.A.2
Gerristsen, J.W.3
Kempen, H.V.4
Callant, P.5
-
14
-
-
17644446207
-
-
0039-6028
-
K. Sakamoto, K. Meguro, R. Arafune, M. Satoh, Y. Uehara, and S. Ushioda, Surf. Sci. 502-503, 149 (2002). 0039-6028
-
(2002)
Surf. Sci.
, vol.502-503
, pp. 149
-
-
Sakamoto, K.1
Meguro, K.2
Arafune, R.3
Satoh, M.4
Uehara, Y.5
Ushioda, S.6
-
15
-
-
11744302227
-
-
JMOPEW 0950-0340 10.1080/095003498151582
-
W. L. Barnes, J. Mod. Opt. JMOPEW 0950-0340 10.1080/095003498151582 45, 661 (1998).
-
(1998)
J. Mod. Opt.
, vol.45
, pp. 661
-
-
Barnes, W.L.1
-
16
-
-
0036612509
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.65.212107
-
G. Hoffmann, L. Libioulle, and R. Berndt, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.65.212107 65, 212107 (2002), and references therein.
-
(2002)
Phys. Rev. B
, vol.65
, pp. 212107
-
-
Hoffmann, G.1
Libioulle, L.2
Berndt, R.3
-
17
-
-
0037462546
-
-
SCIEAS 0036-8075 10.1126/science.1078675
-
X. H. Qiu, G. V. Nazin, and W. Ho, Science SCIEAS 0036-8075 10.1126/science.1078675 299, 542 (2003).
-
(2003)
Science
, vol.299
, pp. 542
-
-
Qiu, X.H.1
Nazin, G.V.2
Ho, W.3
-
18
-
-
1842531831
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.086801
-
Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.086801 92, 086801 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 086801
-
-
Dong, Z.-C.1
Guo, X.-L.2
Trifonov, A.S.3
Dorozhkin, P.S.4
Miki, K.5
Kimura, K.6
Yokoyama, S.7
Mashiko, S.8
-
19
-
-
0037116225
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.66.245306
-
J. Buker and G. Kirczenow, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.66.245306 66, 245306 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 245306
-
-
Buker, J.1
Kirczenow, G.2
-
20
-
-
28844503375
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.206802
-
M. Galperin and A. Nitzan, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.206802 95, 206802 (2005)
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 206802
-
-
Galperin, M.1
Nitzan, A.2
-
21
-
-
33745311062
-
-
JCPSA6 0021-9606 10.1063/1.2204917
-
M. Galperin and A. Nitzan, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.2204917 124, 234709 (2006).
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 234709
-
-
Galperin, M.1
Nitzan, A.2
-
22
-
-
33644509252
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.73.075211
-
U. Harbola, J. B. Maddox, and S. Mukamel, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.73.075211 73, 075211 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 075211
-
-
Harbola, U.1
Maddox, J.B.2
Mukamel, S.3
-
23
-
-
52949095328
-
-
Some of the data in Ref. involves Zn-etioporphyrin on bare NiAl(110), with no insulating 'spacer' layer. For this data, plasmon-based photon emission is significant and molecular-based photon emission is quenched. The model in the present article has been created to study systems involving an insulating 'spacer' layer. Therefore, our discussion of the data in Ref. is limited to the cases with a 'spacer' layer, where plasmon-based emission was shown to be negligible experimentally (Ref.), and plasmon effects are not considered in this article.
-
Some of the data in Ref. involves Zn-etioporphyrin on bare NiAl(110), with no insulating 'spacer' layer. For this data, plasmon-based photon emission is significant and molecular-based photon emission is quenched. The model in the present article has been created to study systems involving an insulating 'spacer' layer. Therefore, our discussion of the data in Ref. is limited to the cases with a 'spacer' layer, where plasmon-based emission was shown to be negligible experimentally (Ref.), and plasmon effects are not considered in this article.
-
-
-
-
24
-
-
29744465481
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.72.205338
-
J. Buker and G. Kirczenow, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.205338 72, 205338 (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 205338
-
-
Buker, J.1
Kirczenow, G.2
-
25
-
-
38949169781
-
-
JCOMEL 0953-8984 10.1088/0953-8984/20/8/083203
-
M. Koentopp, C. Chang, K. Burke, and R. Car, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/20/8/083203 20, 083203 (2008).
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 083203
-
-
Koentopp, M.1
Chang, C.2
Burke, K.3
Car, R.4
-
26
-
-
33947092746
-
-
JACSAT 0002-7863 10.1021/ja00480a005
-
J. H. Ammeter, H.-B. Bürgi, J. C. Thibeault, and R. Hoffman, J. Am. Chem. Soc. JACSAT 0002-7863 10.1021/ja00480a005 100, 3686 (1978).
-
(1978)
J. Am. Chem. Soc.
, vol.100
, pp. 3686
-
-
Ammeter, J.H.1
Bürgi, H.-B.2
Thibeault, J.C.3
Hoffman, R.4
-
27
-
-
52949110500
-
-
The implementation used was that of
-
The implementation used was that of G. A. Landrum and W. V. Glassy, YAEHMOP project, http://yaehmop.sourceforge.net
-
-
-
Landrum, G.A.1
Glassy, W.V.2
-
28
-
-
20444392081
-
-
SCIEAS 0036-8075 10.1126/science.1107783
-
G. Kresse, M. Schmid, E. Napetschnig, M. Shishkin, L. Köhler, and P. Varga, Science SCIEAS 0036-8075 10.1126/science.1107783 308, 1440 (2005).
-
(2005)
Science
, vol.308
, pp. 1440
-
-
Kresse, G.1
Schmid, M.2
Napetschnig, E.3
Shishkin, M.4
Köhler, L.5
Varga, P.6
-
29
-
-
52949136935
-
-
2 since the velocities of the incoming electron (v) and the (elastically scattered) transmitted electron (v′) are equal. However, the transmission probability T depends on the applied bias voltage Vbias due to the dependence of the molecular orbital energies on the bias that is calculated as described in Sec. 2.
-
2 since the velocities of the incoming electron (v) and the (elastically scattered) transmitted electron (v′) are equal. However, the transmission probability T depends on the applied bias voltage Vbias due to the dependence of the molecular orbital energies on the bias that is calculated as described in Sec. 2.
-
-
-
-
30
-
-
4243882681
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.81.5205
-
E. Emberly and G. Kirczenow, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81.5205 81, 5205 (1998)
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 5205
-
-
Emberly, E.1
Kirczenow, G.2
-
33
-
-
26544434087
-
-
0031-9163
-
R. Landauer, Phys. Lett. 85A, 91 (1981). 0031-9163
-
(1981)
Phys. Lett.
, vol.85
, pp. 91
-
-
Landauer, R.1
-
35
-
-
52949106043
-
-
The implementation used was that of
-
The implementation used was that of G. Calzaferri, R. Rytz, and M. Brändle, ICON-EDIT, http://iacrs1.unibe.ch/program/iconedit.html
-
-
-
Calzaferri, G.1
Rytz, R.2
Brändle, M.3
-
36
-
-
27544513934
-
-
ASUSEE 0169-4332 10.1016/j.apsusc.2005.03.116
-
W. Song and M. Yoshitake, Appl. Surf. Sci. ASUSEE 0169-4332 10.1016/j.apsusc.2005.03.116 251, 14 (2005).
-
(2005)
Appl. Surf. Sci.
, vol.251
, pp. 14
-
-
Song, W.1
Yoshitake, M.2
-
37
-
-
0035883611
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.64.125318
-
E. G. Emberly and G. Kirczenow, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.64.125318 64, 125318 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 125318
-
-
Emberly, E.G.1
Kirczenow, G.2
-
38
-
-
52949110499
-
-
The B3pW91 functional and Lanl2DZ basis set were used for this calculation.
-
The B3pW91 functional and Lanl2DZ basis set were used for this calculation. M. J. Frisch, GAUSSIAN 98, Gaussian, Inc., Pittsburgh, PA, 1998.
-
(1998)
-
-
Frisch, M.J.1
-
39
-
-
52949095682
-
-
In order to simulate strong molecule-substrate coupling on a uniform oxide surface, each substrate contact in this case is positioned 4.0 Å below the plane of the molecule (2.5Å from the nearest atom of the molecule). The tip probe is positioned 4.1Å above the molecule. See Fig. 2.
-
In order to simulate strong molecule-substrate coupling on a uniform oxide surface, each substrate contact in this case is positioned 4.0Å below the plane of the molecule (2.5Å from the nearest atom of the molecule). The tip probe is positioned 4.1Å above the molecule. See Fig. 2.
-
-
-
-
40
-
-
52949144868
-
-
Changing the ratio α: γ1: γ2 affects the energies of the relevant molecular orbitals when a bias voltage is applied, but does not qualitatively change the model results as long as the condition γ2 <α< γ1 is met. For a ratio α: γ1: γ2 set to 9:10:8 instead of 3:4:2 (corresponding to smaller differences in the electrostatic effects on each orbital), all of the qualitative features described in Sec. 3 remain the same.
-
Changing the ratio α: γ1: γ2 affects the energies of the relevant molecular orbitals when a bias voltage is applied, but does not qualitatively change the model results as long as the condition γ2 <α< γ1 is met. For a ratio α: γ1: γ2 set to 9:10:8 instead of 3:4:2 (corresponding to smaller differences in the electrostatic effects on each orbital), all of the qualitative features described in Sec. 3 remain the same.
-
-
-
-
41
-
-
52949126919
-
-
Here, the substrate contact S4 is positioned 4.0Å below the plane of the molecule, with the other three substrate contacts positioned 4.5Å below the plane. The tip probe is positioned 4.5Å above the molecule.
-
Here, the substrate contact S4 is positioned 4.0Å below the plane of the molecule, with the other three substrate contacts positioned 4.5Å below the plane. The tip probe is positioned 4.5Å above the molecule.
-
-
-
-
42
-
-
52949151468
-
-
LUMO.
-
LUMO.
-
-
-
-
43
-
-
52949089606
-
-
Here, the substrate contacts are positioned 4.5̊ below the plane of the molecule (3.0̊ from the nearest atom of the molecule) and the tip probe is positioned 4.0̊ above the molecule. The lateral electrode positions are the same as for the other cases (see Fig. 2).
-
Here, the substrate contacts are positioned 4.5̊ below the plane of the molecule (3.0̊ from the nearest atom of the molecule) and the tip probe is positioned 4.0̊ above the molecule. The lateral electrode positions are the same as for the other cases (see Fig. 2).
-
-
-
-
44
-
-
33744817379
-
-
SCIEAS 0036-8075 10.1126/science.1124881
-
S. W. Wu, N. Ogawa, and W. Ho, Science SCIEAS 0036-8075 10.1126/science.1124881 312, 1362 (2006).
-
(2006)
Science
, vol.312
, pp. 1362
-
-
Wu, S.W.1
Ogawa, N.2
Ho, W.3
|