-
8
-
-
0035789280
-
Generalized clustering, supervised learning, and data assignment
-
San Francisco; ACM Press
-
A. Kalton, P. Langley, K. Wagstaff, and J. Yoo. Generalized clustering, supervised learning, and data assignment. In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining, pages 299-304, San Francisco, 2001. ACM Press.
-
(2001)
Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
, pp. 299-304
-
-
Kalton, A.1
Langley, P.2
Wagstaff, K.3
Yoo, J.4
-
10
-
-
0038205847
-
The global k-means clustering algorithm
-
Technical report, Computer Science Institute, University of Amsterdam, The Netherlands, February; IAS-UVA-01-02
-
A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algorithm. Technical report, Computer Science Institute, University of Amsterdam, The Netherlands, February 2001. IAS-UVA-01-02.
-
(2001)
-
-
Likas, A.1
Vlassis, N.2
Verbeek, J.3
-
11
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
In L. M. LeCam and J. Neyman, editors; Berkeley, CA; University of California Press
-
J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. LeCam and J. Neyman, editors, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281-297, Berkeley, CA, 1967. University of California Press.
-
(1967)
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
, vol.1
, pp. 281-297
-
-
MacQueen, J.1
-
12
-
-
0034826101
-
An experimental comparison of model-based clustering methods
-
M. Meǐla and D. Heckerman. An experimental comparison of model-based clustering methods. Machine learning, 42:9-29, 2001.
-
(2001)
Machine Learning
, vol.42
, pp. 9-29
-
-
Meǐla, M.1
Heckerman, D.2
-
15
-
-
0001820920
-
X-means: Extending K-means with efficient estimation of the number of clusters
-
Morgan Kaufmann, San Francisco, CA
-
D. Pelleg and A. Moore. X-means: Extending K-means with efficient estimation of the number of clusters. In Proceedings of the 17th International Conf. on Machine Learning, pages 727-734. Morgan Kaufmann, San Francisco, CA, 2000.
-
(2000)
Proceedings of the 17th International Conf. on Machine Learning
, pp. 727-734
-
-
Pelleg, D.1
Moore, A.2
-
16
-
-
0033204902
-
An empirical comparison of four initialization methods for the k-means algorithm
-
J. Peña, J. Lozano, and P. Larrañaga. An empirical comparison of four initialization methods for the k-means algorithm. Pattern recognition letters, 20:1027-1040, 1999.
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 1027-1040
-
-
Peña, J.1
Lozano, J.2
Larrañaga, P.3
-
18
-
-
26544440122
-
Fastmix clustering software
-
P. Sand and A. Moore. Fastmix clustering software, 2002. http://www.cs.cmu.edu/-psand/.
-
(2002)
-
-
Sand, P.1
Moore, A.2
-
21
-
-
0012981871
-
Generalized k-harmonic means - Boosting in unsupervised learning
-
Technical Report HPL-2000-137, Hewlett-Packard Labs
-
B. Zhang. Generalized k-harmonic means - boosting in unsupervised learning. Technical Report HPL-2000-137, Hewlett-Packard Labs, 2000.
-
(2000)
-
-
Zhang, B.1
-
22
-
-
0037530529
-
K-harmonic means - A data clustering algorithm
-
Technical Report HPL-1999-124, Hewlett-Packard Labs
-
B. Zhang, M. Hsu, and U. Dayal. K-harmonic means - a data clustering algorithm. Technical Report HPL-1999-124, Hewlett-Packard Labs, 1999.
-
(1999)
-
-
Zhang, B.1
Hsu, M.2
Dayal, U.3
|