메뉴 건너뛰기




Volumn , Issue , 2007, Pages 2454-2459

A naïve support vector regression benchmark for the NN3 forecasting competition

Author keywords

[No Author keywords available]

Indexed keywords

ARSENIC COMPOUNDS; ARTIFICIAL INTELLIGENCE; COMPETITION; COMPUTER NETWORKS; CONTROL THEORY; FEEDFORWARD NEURAL NETWORKS; FORECASTING; HEURISTIC ALGORITHMS; HEURISTIC METHODS; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; TIME SERIES ANALYSIS; VECTORS;

EID: 51749099801     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2007.4371343     Document Type: Conference Paper
Times cited : (4)

References (39)
  • 1
    • 10644282144 scopus 로고    scopus 로고
    • The Accuracy of a Procedural Approach to Specifying Feedforward Neural Networks for Forecasting
    • K.-P. Liao; and R. Fildes, "The Accuracy of a Procedural Approach to Specifying Feedforward Neural Networks for Forecasting," Computers & Operations Research, vol. 32, pp. 2121-2169, 2005.
    • (2005) Computers & Operations Research , vol.32 , pp. 2121-2169
    • Liao, K.-P.1    Fildes, R.2
  • 2
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with Artificial Neural Networks: The State of the Art
    • G. Zhang, B. E. Patuwo, and M. Y. Hu, "Forecasting with Artificial Neural Networks: The State of the Art," International Journal of Forecasting, vol. 14, pp. 35-62, 1998.
    • (1998) International Journal of Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 4
    • 4043137356 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Regression
    • A. J. Smola; and B. Schölkopf, "A Tutorial on Support Vector Regression," Statistics and Computing, vol. 14, pp. 199-222, 2004.
    • (2004) Statistics and Computing , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 6
    • 35048832408 scopus 로고    scopus 로고
    • Outliers Treatment in Support Vector Regression for Financial Time SeriesPrediction
    • H. Yang, K. Huang, L. W. Chan, K. C. I. King, and R. M. Lyu, "Outliers Treatment in Support Vector Regression for Financial Time SeriesPrediction"." Computer Science, vol. 3316, pp. 1260-1265, 2004.
    • (2004) Computer Science , vol.3316 , pp. 1260-1265
    • Yang, H.1    Huang, K.2    Chan, L.W.3    King, K.C.I.4    Lyu, R.M.5
  • 7
    • 51749104211 scopus 로고    scopus 로고
    • Forecasting with Computational Intelligence - An Evaluation of Support Vector Regression and Artificial Neural Networks for Time Series Prediction
    • presented at, Vancouver Canada
    • S. F. Crone, S. Lessmann, and S. Pietsch, "Forecasting with Computational Intelligence - An Evaluation of Support Vector Regression and Artificial Neural Networks for Time Series Prediction," presented at 2006 IEEE WCCI, Vancouver (Canada), 2006.
    • (2006) 2006 IEEE WCCI
    • Crone, S.F.1    Lessmann, S.2    Pietsch, S.3
  • 8
    • 0032594959 scopus 로고    scopus 로고
    • An Overview of Statistical Learning Theory
    • V. N. Vapnik, "An Overview of Statistical Learning Theory," IEEE Transactions on Neural Networks, vol. 10, pp. 988-1000, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 988-1000
    • Vapnik, V.N.1
  • 12
    • 0242288816 scopus 로고    scopus 로고
    • A Geometric Approach to Support Vector Regression
    • J. Bi; and K. P. Bennett, "A Geometric Approach to Support Vector Regression," Neurocomputing, vol. 55, pp. 79-108, 2003.
    • (2003) Neurocomputing , vol.55 , pp. 79-108
    • Bi, J.1    Bennett, K.P.2
  • 14
    • 0003425664 scopus 로고    scopus 로고
    • University of Southampton, Technical Report. Image, Speech and Intelligent Systems Group January
    • S. R. Gunn, "Support Vector Machines for Classification and Regression," University of Southampton, Technical Report. Image, Speech and Intelligent Systems Group January 1998.
    • (1998) Support Vector Machines for Classification and Regression
    • Gunn, S.R.1
  • 16
    • 84968611317 scopus 로고    scopus 로고
    • Non-Fixed and Asymmetrical Margin Approach to Stock Market Prediction Using Support Vector Regression
    • presented at, Singapore Malaysia
    • H. Yang, I. King, and L. Chan, "Non-Fixed and Asymmetrical Margin Approach to Stock Market Prediction Using Support Vector Regression," presented at 9th Conference on Neural Information Processing, Singapore (Malaysia), 2002.
    • (2002) 9th Conference on Neural Information Processing
    • Yang, H.1    King, I.2    Chan, L.3
  • 17
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • U. Fayyad, Ed. Boston U.S.A, Kluwer Academic
    • C. J. C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," in Data Mining and Knowledge Discovery, vol. 2, U. Fayyad, Ed. Boston (U.S.A.): Kluwer Academic, 1998, pp. 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 18
    • 0346250790 scopus 로고    scopus 로고
    • Practical Selection of SVM Parameters and Noise Estimation for SVM Regression
    • V. Cherkassky; and Y. Ma, "Practical Selection of SVM Parameters and Noise Estimation for SVM Regression," Neural Networks, vol. 17, pp. 113-126, 2004.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 19
    • 84886066701 scopus 로고    scopus 로고
    • Parameter Sensitivity of Support Vector Regression and Neural Networks for Forecasting
    • presented at, Las Vegas U.S.A
    • S. F. Crone, S. Lessmann, and S. Pietsch, "Parameter Sensitivity of Support Vector Regression and Neural Networks for Forecasting," presented at International Conference on Data Mining, Las Vegas (U.S.A.), 2006.
    • (2006) International Conference on Data Mining
    • Crone, S.F.1    Lessmann, S.2    Pietsch, S.3
  • 20
    • 0036161010 scopus 로고    scopus 로고
    • A probabilistic framework for SVM regression and error bar estimation
    • J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown, "A probabilistic framework for SVM regression and error bar estimation," Machine Learning, vol. 46, pp. 71-89, 2002.
    • (2002) Machine Learning , vol.46 , pp. 71-89
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3    Brown, M.4
  • 21
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian Support Vector Regression Using a Unified Loss function
    • W. Chu, S. S. Keerthi, and C. J. Ong, "Bayesian Support Vector Regression Using a Unified Loss function," IEEE Transactions on Neural Networks, vol. 15, pp. 29-44, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.15 , pp. 29-44
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3
  • 22
    • 17444398555 scopus 로고    scopus 로고
    • Leave-One-Out Bounds for Support Vector Regression Model Selection
    • M.-W. Chang; and C.-J. Lin, "Leave-One-Out Bounds for Support Vector Regression Model Selection," Neural Computation, vol. 17, pp. 1188-1222, 2005.
    • (2005) Neural Computation , vol.17 , pp. 1188-1222
    • Chang, M.-W.1    Lin, C.-J.2
  • 26
    • 51749112071 scopus 로고    scopus 로고
    • Linear Dependency Between epsilon and the Input Noise in epsilon -Support Vector Regression, IEEE Transactions on Neural Networks
    • J. T. Kwok; and I. W. Tsang, "Linear Dependency Between epsilon and the Input Noise in epsilon -Support Vector Regression," IEEE Transactions on Neural Networks, ICANN 2001, pp. 405-410, 2003.
    • (2003) ICANN 2001 , pp. 405-410
    • Kwok, J.T.1    Tsang, I.W.2
  • 30
    • 0036505670 scopus 로고    scopus 로고
    • A Comparison of Methods for Multiclass Support Vector Machines
    • C.-W. Hsu; and C.-J. Lin, "A Comparison of Methods for Multiclass Support Vector Machines," IEEE Transactions on Neural Networks, vol. 13, pp. 415-425, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 31
    • 33749605642 scopus 로고    scopus 로고
    • Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting
    • presented at
    • C.-C. Hsu, C.-H. Wu, S.-C. Chen, and K.-L. Peng, "Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting," presented at 39th International Conference on System Sciences, 2006.
    • (2006) 39th International Conference on System Sciences
    • Hsu, C.-C.1    Wu, C.-H.2    Chen, S.-C.3    Peng, K.-L.4
  • 32
    • 29144499905 scopus 로고    scopus 로고
    • Working Set Selection Using Second Order Information for Training Support Vector Machines
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin, "Working Set Selection Using Second Order Information for Training Support Vector Machines," Journal of Machine Learning Research, vol. 6, pp. 1889-1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 37
    • 51749121015 scopus 로고    scopus 로고
    • Time Series Prediction Using Evolving Polynomial Neural Networks
    • Manchester United Kingdom, University of Manchester
    • A. Foka, "Time Series Prediction Using Evolving Polynomial Neural Networks," in Institute of Science and Technology. Manchester (United Kingdom): University of Manchester, 1999.
    • (1999) Institute of Science and Technology
    • Foka, A.1
  • 38
    • 0002006114 scopus 로고
    • Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons
    • J. S. Armstrong; and F. Collopy, "Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons," International Journal of Forecasting, vol. 8, pp. 69-80, 1992.
    • (1992) International Journal of Forecasting , vol.8 , pp. 69-80
    • Armstrong, J.S.1    Collopy, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.