메뉴 건너뛰기




Volumn 106, Issue 2, 2008, Pages 154-161

A motif detection and classification method for peptide sequences using genetic programming

Author keywords

alignment; fuzzy neural network; genetic programming; peptide; property motif

Indexed keywords

AMINATION; AMINO ACIDS; ARSENIC COMPOUNDS; AUTOMATIC PROGRAMMING; COMPUTER PROGRAMMING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; ORGANIC ACIDS; PEPTIDES; PROTEINS;

EID: 51549106076     PISSN: 13891723     EISSN: None     Source Type: Journal    
DOI: 10.1263/jbb.106.154     Document Type: Article
Times cited : (3)

References (33)
  • 1
    • 0024297354 scopus 로고
    • Multiple sequence alignment with hierarchical clustering
    • Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16 (1988) 10881-10890
    • (1988) Nucleic Acids Res. , vol.16 , pp. 10881-10890
    • Corpet, F.1
  • 2
    • 0027968068 scopus 로고
    • CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
    • Thompson J.D., Higgins D.G., and Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673-4680
    • (1994) Nucleic Acids Res. , vol.22 , pp. 4673-4680
    • Thompson, J.D.1    Higgins, D.G.2    Gibson, T.J.3
  • 3
    • 0036019297 scopus 로고    scopus 로고
    • Predicting the transmembrane secondary structure of ligand-gated ion channels
    • Bertaccini E., and Trudell J.R. Predicting the transmembrane secondary structure of ligand-gated ion channels. Protein Eng. 15 (2002) 443-454
    • (2002) Protein Eng. , vol.15 , pp. 443-454
    • Bertaccini, E.1    Trudell, J.R.2
  • 4
    • 0023084055 scopus 로고
    • Progressive sequence alignment as a prerequisite to correct phylogenetic trees
    • Feng D.F., and Doolittle R.F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25 (1987) 351-360
    • (1987) J. Mol. Evol. , vol.25 , pp. 351-360
    • Feng, D.F.1    Doolittle, R.F.2
  • 5
    • 0026458378 scopus 로고
    • Amino acid substitution matrices from protein blocks
    • Henikoff S., and Henikoff J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89 (1992) 10915-10919
    • (1992) Proc. Natl. Acad. Sci. USA , vol.89 , pp. 10915-10919
    • Henikoff, S.1    Henikoff, J.G.2
  • 7
    • 0031684427 scopus 로고    scopus 로고
    • Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm
    • Rigoutsos I., and Floratos A. Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm. Bioinformatics 14 (1998) 55-67
    • (1998) Bioinformatics , vol.14 , pp. 55-67
    • Rigoutsos, I.1    Floratos, A.2
  • 8
    • 33750304297 scopus 로고    scopus 로고
    • A linguistic model for the rational design of antimicrobial peptides
    • Loose C., Jensen K., Rigoutsos I., and Stephanopoulos G. A linguistic model for the rational design of antimicrobial peptides. Nature 443 (2006) 867-869
    • (2006) Nature , vol.443 , pp. 867-869
    • Loose, C.1    Jensen, K.2    Rigoutsos, I.3    Stephanopoulos, G.4
  • 9
    • 0036399733 scopus 로고    scopus 로고
    • Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules
    • Noguchi H., Kato R., Hanai T., Matsubara Y., Honda H., Brusic V., and Kobayashi T. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J. Biosci. Bioeng. 94 (2002) 264-270
    • (2002) J. Biosci. Bioeng. , vol.94 , pp. 264-270
    • Noguchi, H.1    Kato, R.2    Hanai, T.3    Matsubara, Y.4    Honda, H.5    Brusic, V.6    Kobayashi, T.7
  • 10
    • 33644828578 scopus 로고    scopus 로고
    • Prediction of binding sites of peptide recognition domains: an application on Grb2 and SAP SH2 domains
    • McLaughlin W.A., Hou T., and Wang W. Prediction of binding sites of peptide recognition domains: an application on Grb2 and SAP SH2 domains. J. Mol. Biol. 357 (2006) 1322-1334
    • (2006) J. Mol. Biol. , vol.357 , pp. 1322-1334
    • McLaughlin, W.A.1    Hou, T.2    Wang, W.3
  • 11
    • 32144443802 scopus 로고    scopus 로고
    • A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli
    • Idicula-Thomas S., Kulkarni A.J., Kulkarni B.D., Jayaraman V.K., and Balaji P.V. A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli. Bioinformatics 22 (2006) 278-284
    • (2006) Bioinformatics , vol.22 , pp. 278-284
    • Idicula-Thomas, S.1    Kulkarni, A.J.2    Kulkarni, B.D.3    Jayaraman, V.K.4    Balaji, P.V.5
  • 12
    • 33745674976 scopus 로고    scopus 로고
    • Prediction of peptide binding to major histocompatibility complex class II molecules through use of boosted fuzzy classifier with SWEEP operator method
    • Takahashi H., and Honda H. Prediction of peptide binding to major histocompatibility complex class II molecules through use of boosted fuzzy classifier with SWEEP operator method. J. Biosci. Bioeng. 101 (2006) 137-141
    • (2006) J. Biosci. Bioeng. , vol.101 , pp. 137-141
    • Takahashi, H.1    Honda, H.2
  • 13
    • 34547358188 scopus 로고    scopus 로고
    • Peptide reagent design based on physical and chemical properties of amino acid residues
    • Du Q.S., Huang R.B., Wei Y.T., Wang C.H., and Chou K.C. Peptide reagent design based on physical and chemical properties of amino acid residues. J. Comput. Chem. 28 (2007) 2043-2050
    • (2007) J. Comput. Chem. , vol.28 , pp. 2043-2050
    • Du, Q.S.1    Huang, R.B.2    Wei, Y.T.3    Wang, C.H.4    Chou, K.C.5
  • 15
    • 0020475449 scopus 로고
    • A simple method for displaying the hydropathic character of a protein
    • Kyte J., and Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157 (1982) 105-132
    • (1982) J. Mol. Biol. , vol.157 , pp. 105-132
    • Kyte, J.1    Doolittle, R.F.2
  • 16
    • 0014349825 scopus 로고
    • The characterization of amino acid sequences in proteins by statistical methods
    • Zimmerman J.M., Eliezer N., and Simha R. The characterization of amino acid sequences in proteins by statistical methods. J. Theor. Biol. 21 (1968) 170-201
    • (1968) J. Theor. Biol. , vol.21 , pp. 170-201
    • Zimmerman, J.M.1    Eliezer, N.2    Simha, R.3
  • 18
    • 85069103664 scopus 로고    scopus 로고
    • Horikawa, S., Furuhashi, T., Uchikawa, Y., Tagawa, T. A study on fuzzy modeling using fuzzy neural networks, p. 562-573. In Proceedings of the International Fuzzy Engineering Symposium '91. Ohmsha, Tokyo (1991).
    • Horikawa, S., Furuhashi, T., Uchikawa, Y., Tagawa, T. A study on fuzzy modeling using fuzzy neural networks, p. 562-573. In Proceedings of the International Fuzzy Engineering Symposium '91. Ohmsha, Tokyo (1991).
  • 19
    • 85069090483 scopus 로고    scopus 로고
    • Holland, J.H. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975).
    • Holland, J.H. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975).
  • 20
    • 0345293243 scopus 로고    scopus 로고
    • Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function
    • Yang Z.R., Thomson R., Hodgman T.C., Dry J., Doyle A.K., Narayanan A., and Wu X. Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function. Biosystems 72 (2003) 159-176
    • (2003) Biosystems , vol.72 , pp. 159-176
    • Yang, Z.R.1    Thomson, R.2    Hodgman, T.C.3    Dry, J.4    Doyle, A.K.5    Narayanan, A.6    Wu, X.7
  • 21
    • 12344324769 scopus 로고    scopus 로고
    • Mining HIV protease cleavage data using genetic programming with a sum-product function
    • Yang Z.R., Dalby A.R., and Qiu J. Mining HIV protease cleavage data using genetic programming with a sum-product function. Bioinformatics 20 (2004) 3398-3405
    • (2004) Bioinformatics , vol.20 , pp. 3398-3405
    • Yang, Z.R.1    Dalby, A.R.2    Qiu, J.3
  • 22
    • 3543036224 scopus 로고    scopus 로고
    • Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming
    • Saetrom P. Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming. Bioinformatics 20 (2004) 3055-3063
    • (2004) Bioinformatics , vol.20 , pp. 3055-3063
    • Saetrom, P.1
  • 23
    • 22544432248 scopus 로고    scopus 로고
    • Novel strategy for protein exploration: high-throughput screening assisted with fuzzy neural network
    • Kato R., Nakano H., Konishi H., Kato K., Koga Y., Yamane T., Kobayashi T., and Honda H. Novel strategy for protein exploration: high-throughput screening assisted with fuzzy neural network. J. Mol. Biol. 351 (2005) 683-692
    • (2005) J. Mol. Biol. , vol.351 , pp. 683-692
    • Kato, R.1    Nakano, H.2    Konishi, H.3    Kato, K.4    Koga, Y.5    Yamane, T.6    Kobayashi, T.7    Honda, H.8
  • 24
    • 0034776133 scopus 로고    scopus 로고
    • Fuzzy neural network-based prediction of the motif for MHC class II binding peptides
    • Noguchi H., Hanai T., Honda H., Harrison L.C., and Kobayashi T. Fuzzy neural network-based prediction of the motif for MHC class II binding peptides. J. Biosci. Bioeng. 92 (2001) 227-231
    • (2001) J. Biosci. Bioeng. , vol.92 , pp. 227-231
    • Noguchi, H.1    Hanai, T.2    Honda, H.3    Harrison, L.C.4    Kobayashi, T.5
  • 25
    • 0242693932 scopus 로고    scopus 로고
    • Multiple fuzzy neural network system for outcome prediction and classification of 220 lymphoma patients on the basis of molecular profiling
    • Ando T., Suguro M., Kobayashi T., Seto M., and Honda H. Multiple fuzzy neural network system for outcome prediction and classification of 220 lymphoma patients on the basis of molecular profiling. Cancer Sci. 94 (2003) 906-913
    • (2003) Cancer Sci. , vol.94 , pp. 906-913
    • Ando, T.1    Suguro, M.2    Kobayashi, T.3    Seto, M.4    Honda, H.5
  • 26
    • 0041876042 scopus 로고    scopus 로고
    • Selection of causal gene sets for lymphoma prognostication from expression profiling and construction of prognostic fuzzy neural network models
    • Ando T., Suguro M., Kobayashi T., Seto M., and Honda H. Selection of causal gene sets for lymphoma prognostication from expression profiling and construction of prognostic fuzzy neural network models. J. Biosci. Bioeng. 96 (2003) 161-167
    • (2003) J. Biosci. Bioeng. , vol.96 , pp. 161-167
    • Ando, T.1    Suguro, M.2    Kobayashi, T.3    Seto, M.4    Honda, H.5
  • 27
    • 6944243773 scopus 로고    scopus 로고
    • Prognostic predictor with multiple fuzzy neural models using expression profiles from DNA microarray for metastases of breast cancer
    • Takahashi H., Masuda K., Ando T., Kobayashi T., and Honda H. Prognostic predictor with multiple fuzzy neural models using expression profiles from DNA microarray for metastases of breast cancer. J. Biosci. Bioeng. 98 (2004) 193-199
    • (2004) J. Biosci. Bioeng. , vol.98 , pp. 193-199
    • Takahashi, H.1    Masuda, K.2    Ando, T.3    Kobayashi, T.4    Honda, H.5
  • 28
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15 (1985) 116-132
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 29
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E. Learning representations by back-propagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1
  • 30
    • 0031825709 scopus 로고    scopus 로고
    • Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
    • Brusic V., Rudy G., Honeyman G., Hammer J., and Harrison L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14 (1998) 121-130
    • (1998) Bioinformatics , vol.14 , pp. 121-130
    • Brusic, V.1    Rudy, G.2    Honeyman, G.3    Hammer, J.4    Harrison, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.