메뉴 건너뛰기




Volumn 96, Issue 2, 2003, Pages 161-167

Selection of causal gene sets for lymphoma prognostication from expression profiling and construction of prognostic fuzzy neural network models

Author keywords

Expression profile; Fuzzy neural network; Lymphoma; Modeling; Prognostification

Indexed keywords

DNA; NEURAL NETWORKS; PATIENT TREATMENT;

EID: 0041876042     PISSN: 13891723     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1389-1723(03)90119-8     Document Type: Article
Times cited : (14)

References (20)
  • 1
    • 0030940076 scopus 로고    scopus 로고
    • Subclassification of diffuse large B-cell lymphomas according to the Kiel classification: Distinction of centroblastic and immunoblastic lymphomas is a significant prognostic risk factor
    • Engelhard, M., Brittinger, G., Huhn, D., Gerhartz, H. H., Meusers, P., Siegert, W., Thiel, E., Wilmanns, W., Aydemir, U., Bierwolf, S., and other 3 authors: Subclassification of diffuse large B-cell lymphomas according to the Kiel classification: distinction of centroblastic and immunoblastic lymphomas is a significant prognostic risk factor. Blood, 89, 2291-2297 (1997).
    • (1997) Blood , vol.89 , pp. 2291-2297
    • Engelhard, M.1    Brittinger, G.2    Huhn, D.3    Gerhartz, H.H.4    Meusers, P.5    Siegert, W.6    Thiel, E.7    Wilmanns, W.8    Aydemir, U.9    Bierwolf, S.10
  • 2
    • 0031927984 scopus 로고    scopus 로고
    • New approach to classifying non-Hodgkin's lymphomas: Clinical features of the major histologic subtypes. Non-Hodgkin's lymphoma classification project
    • Armitage, J. O. and Weisenburger, D. D.: New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's lymphoma classification project. J. Clin. Oncol., 16, 2780-2795 (1998).
    • (1998) J. Clin. Oncol. , vol.16 , pp. 2780-2795
    • Armitage, J.O.1    Weisenburger, D.D.2
  • 3
    • 0027444652 scopus 로고
    • A predictive model for aggressive non-Hodgkin's lymphoma
    • The International Non-Hodgkin's Lymphoma Prognostic Factors Project: A predictive model for aggressive non-Hodgkin's lymphoma. N. Engl. J. Med., 329, 987-994 (1993).
    • (1993) N. Engl. J. Med. , vol.329 , pp. 987-994
  • 10
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and Golub, T. R.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA, 96, 2907-2912 (1999).
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3    Zhu, Q.4    Kitareewan, S.5    Dmitrovsky, E.6    Lander, E.S.7    Golub, T.R.8
  • 11
    • 0036868316 scopus 로고    scopus 로고
    • Fuzzy neural network applied to gene expression profiling for prognosis of diffuse large B-cell lymphoma
    • Ando, T., Suguro, M., Hanai, T., Kobayashi, T., Honda, H., and Seto, M.: Fuzzy neural network applied to gene expression profiling for prognosis of diffuse large B-cell lymphoma. Jpn. J. Cancer Res., 93, 1207-1212 (2002).
    • (2002) Jpn. J. Cancer Res. , vol.93 , pp. 1207-1212
    • Ando, T.1    Suguro, M.2    Hanai, T.3    Kobayashi, T.4    Honda, H.5    Seto, M.6
  • 12
    • 0036082056 scopus 로고    scopus 로고
    • Artificial neural network predictive model for allergic disease using single nucleotide polymorphisms data
    • Tomida, S., Hanai, T., Korea, N., Suzuki, Y., Kobayashi, T., and Honda, H.: Artificial neural network predictive model for allergic disease using single nucleotide polymorphisms data. J. Biosci. Bioeng., 93, 470-478 (2002).
    • (2002) J. Biosci. Bioeng. , vol.93 , pp. 470-478
    • Tomida, S.1    Hanai, T.2    Korea, N.3    Suzuki, Y.4    Kobayashi, T.5    Honda, H.6
  • 14
    • 0037096859 scopus 로고    scopus 로고
    • Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer
    • Xu, Y., Selaru, F. M., Yin, J., Zou, T. T., Shustova, V., Mori, Y., Sato, F., Liu, T. C., Olaru, A., Wang, S., and other 8 authors: Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer. Cancer Res., 62, 3493-3497 (2002).
    • (2002) Cancer Res. , vol.62 , pp. 3493-3497
    • Xu, Y.1    Selaru, F.M.2    Yin, J.3    Zou, T.T.4    Shustova, V.5    Mori, Y.6    Sato, F.7    Liu, T.C.8    Olaru, A.9    Wang, S.10
  • 15
    • 0034776133 scopus 로고    scopus 로고
    • Fuzzy neural network-based prediction of the motif for MHC class II binding peptides
    • Noguchi, H., Hanai, T., Honda, H., Harrison, L. C., and Kobayashi, T.: Fuzzy neural network-based prediction of the motif for MHC class II binding peptides. J. Biosci. Bioeng., 92, 227-231 (2001).
    • (2001) J. Biosci. Bioeng. , vol.92 , pp. 227-231
    • Noguchi, H.1    Hanai, T.2    Honda, H.3    Harrison, L.C.4    Kobayashi, T.5
  • 19
    • 84947680781 scopus 로고
    • A tutorial on the SWEEP operator
    • Goodnight, J.: A tutorial on the SWEEP operator. Am. Stat., 33, 149-158 (1979).
    • (1979) Am. Stat. , vol.33 , pp. 149-158
    • Goodnight, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.