메뉴 건너뛰기




Volumn 101, Issue 2, 2006, Pages 137-141

Prediction of peptide binding to major histocompatibility complex class II molecules through use of boosted fuzzy classifier with SWEEP operator method

Author keywords

binding peptides; bioinformatics; boosting; fuzzy theory; major histocompatibility complex (MHC) class II

Indexed keywords

CELLS; COMPUTER SIMULATION; FUZZY CONTROL; IMMUNOLOGY; MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; MEDICAL PROBLEMS; NEURAL NETWORKS; POLYPEPTIDES; PROTEINS;

EID: 33745674976     PISSN: 13891723     EISSN: None     Source Type: Journal    
DOI: 10.1263/jbb.101.137     Document Type: Article
Times cited : (19)

References (26)
  • 1
    • 0027399243 scopus 로고
    • Peptides naturally presented by MHC class I molecules
    • Rammensee H.G., Falk K., and Rotzschke O. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11 (1993) 213-244
    • (1993) Annu. Rev. Immunol. , vol.11 , pp. 213-244
    • Rammensee, H.G.1    Falk, K.2    Rotzschke, O.3
  • 4
    • 0027937713 scopus 로고
    • Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning
    • Hammer J., Bono E., Gallazzi F., Belunis C., Nagy Z., and Sinigaglia F. Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 180 (1994) 2353-2358
    • (1994) J. Exp. Med. , vol.180 , pp. 2353-2358
    • Hammer, J.1    Bono, E.2    Gallazzi, F.3    Belunis, C.4    Nagy, Z.5    Sinigaglia, F.6
  • 6
    • 0034776133 scopus 로고    scopus 로고
    • Fuzzy neural network-based prediction of the motif for MHC class II binding peptides
    • Noguchi H., Hanai T., Honda H., Harrison L.C., and Kobayashi T. Fuzzy neural network-based prediction of the motif for MHC class II binding peptides. J. Biosci. Bioeng. 92 (2001) 227-231
    • (2001) J. Biosci. Bioeng. , vol.92 , pp. 227-231
    • Noguchi, H.1    Hanai, T.2    Honda, H.3    Harrison, L.C.4    Kobayashi, T.5
  • 7
    • 1342288007 scopus 로고    scopus 로고
    • SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence
    • Bhasin M., and Raghava G.P. SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence. Bioinformatics 20 (2004) 421-423
    • (2004) Bioinformatics , vol.20 , pp. 421-423
    • Bhasin, M.1    Raghava, G.P.2
  • 8
    • 27544438113 scopus 로고    scopus 로고
    • A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method
    • Takahashi H., and Honda H. A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method. J. Chem. Eng. Jpn. 38 (2005) 763-773
    • (2005) J. Chem. Eng. Jpn. , vol.38 , pp. 763-773
    • Takahashi, H.1    Honda, H.2
  • 9
    • 0036868316 scopus 로고    scopus 로고
    • Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma
    • Ando T., Suguro M., Hanai T., Kobayashi T., Honda H., and Seto M. Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma. Jpn. J. Cancer Res. 93 (2002) 1207-1212
    • (2002) Jpn. J. Cancer Res. , vol.93 , pp. 1207-1212
    • Ando, T.1    Suguro, M.2    Hanai, T.3    Kobayashi, T.4    Honda, H.5    Seto, M.6
  • 10
    • 0031825709 scopus 로고    scopus 로고
    • Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
    • Brusic V., Rudy G., Honeyman G., Hammer J., and Harrison L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14 (1998) 121-130
    • (1998) Bioinformatics , vol.14 , pp. 121-130
    • Brusic, V.1    Rudy, G.2    Honeyman, G.3    Hammer, J.4    Harrison, L.5
  • 11
    • 0020475449 scopus 로고
    • A simple method for displaying the hydropathic character of a protein
    • Kyte J., and Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157 (1982) 105-132
    • (1982) J. Mol. Biol. , vol.157 , pp. 105-132
    • Kyte, J.1    Doolittle, R.F.2
  • 12
    • 0014349825 scopus 로고
    • The characterization of amino acid sequences in proteins by statistical methods
    • Zimmerman J.M., Eliezer N., and Simha R. The characterization of amino acid sequences in proteins by statistical methods. J. Theor. Biol. 21 (1968) 170-201
    • (1968) J. Theor. Biol. , vol.21 , pp. 170-201
    • Zimmerman, J.M.1    Eliezer, N.2    Simha, R.3
  • 14
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Machine Learning 5 (1990) 197-227
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 15
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of online learning and an application to boosting. J. Comput. System Sci. 55 (1997) 119-139
    • (1997) J. Comput. System Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 16
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann. Stat. 28 (2000) 337-407
    • (2000) Ann. Stat. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • Freund Y. An adaptive version of the boost by majority algorithm. Machine Learning 43 (2000) 293-318
    • (2000) Machine Learning , vol.43 , pp. 293-318
    • Freund, Y.1
  • 19
    • 13944255457 scopus 로고    scopus 로고
    • Protein classification based on text document classification techniques
    • Cheng B.Y., Carbonell J.G., and Klein-Seetharaman J. Protein classification based on text document classification techniques. Proteins 58 (2005) 955-970
    • (2005) Proteins , vol.58 , pp. 955-970
    • Cheng, B.Y.1    Carbonell, J.G.2    Klein-Seetharaman, J.3
  • 21
    • 9944245963 scopus 로고    scopus 로고
    • Prediction of functional class of novel viral proteins by a statistical learning method irrespective of sequence similarity
    • Han L.Y., Cai C.Z., Ji Z.L., and Chen Y.Z. Prediction of functional class of novel viral proteins by a statistical learning method irrespective of sequence similarity. Virology 331 (2005) 136-143
    • (2005) Virology , vol.331 , pp. 136-143
    • Han, L.Y.1    Cai, C.Z.2    Ji, Z.L.3    Chen, Y.Z.4
  • 24
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15 (1985) 116-132
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 25
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
    • Horikawa S., Furuhashi T., and Uchikawa Y. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Trans. Neural Netw. 3 (1992) 801-806
    • (1992) IEEE Trans. Neural Netw. , vol.3 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 26
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representations by back-propagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.