메뉴 건너뛰기




Volumn 11, Issue 3-4, 2008, Pages 299-308

A sparse Bayesian approach for joint feature selection and classifier learning

Author keywords

Bayesian learning; Classification; Feature selection

Indexed keywords


EID: 50549087032     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10044-008-0130-1     Document Type: Article
Times cited : (9)

References (41)
  • 4
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • 5
    • Schapire RE, Freund Y, Bartlett PL, Lee WS (1997) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26(5):322-330
    • (1997) Ann Stat , vol.26 , pp. 322-330
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 6
    • 33749354173 scopus 로고    scopus 로고
    • Classifier-independent feature selection on the basis of divergence criterion
    • 2-3
    • Abe N, Kudo M, Toyama J, Shimbo M (2006) Classifier-independent feature selection on the basis of divergence criterion. Pattern Anal Appl 9(2-3):127-137
    • (2006) Pattern Anal Appl , vol.9 , pp. 127-137
    • Abe, N.1    Kudo, M.2    Toyama, J.3    Shimbo, M.4
  • 7
    • 4043111315 scopus 로고    scopus 로고
    • Improving the selection of feature points for tracking
    • 2
    • Zivkovic Z, van der Heijden F (2004) Improving the selection of feature points for tracking. Pattern Anal Appl 7(2):144-150
    • (2004) Pattern Anal Appl , vol.7 , pp. 144-150
    • Zivkovic, Z.1    Van Der Heijden, F.2
  • 8
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • 2
    • Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19(2):153-158
    • (1997) IEEE Trans Pattern Anal Mach Intell , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 9
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179-188
    • (1936) Ann Eugen , vol.7 , pp. 179-188
    • Fisher, R.1
  • 11
    • 28344445092 scopus 로고    scopus 로고
    • An ensemble-based method for linear feature extraction for two-class problems
    • Masip D, Kuncheva LI, Vitria J (2005) An ensemble-based method for linear feature extraction for two-class problems. Pattern Anal Appl 8:227-237
    • (2005) Pattern Anal Appl , vol.8 , pp. 227-237
    • Masip, D.1    Kuncheva, L.I.2    Vitria, J.3
  • 12
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157-1182
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 13
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V (2004) Gene selection for cancer classification using support vector machines. Mach Learn 46(1-3):389-422
    • (2004) Mach Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 14
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • 1
    • Mao KZ (2004) Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Trans Syst Man Cybern Part B 34(1):60-67
    • (2004) IEEE Trans Syst Man Cybern Part B , vol.34 , pp. 60-67
    • Mao, K.Z.1
  • 15
    • 33846063532 scopus 로고    scopus 로고
    • Kernel classifier construction using orthogonal forward selection and boosting with fisher ratio class separability measure
    • 6
    • Chen S, Wang X, Hong X, Harris CJ (2006) Kernel classifier construction using orthogonal forward selection and boosting with fisher ratio class separability measure. IEEE Trans Neural Netw 17(6):1652-1656
    • (2006) IEEE Trans Neural Netw , vol.17 , pp. 1652-1656
    • Chen, S.1    Wang, X.2    Hong, X.3    Harris, C.J.4
  • 16
    • 33847074971 scopus 로고    scopus 로고
    • Backward elimination model construction for regression and classification using leave-one-out criteria
    • 2
    • Hong X, Mitchell RJ (2007) Backward elimination model construction for regression and classification using leave-one-out criteria. Int J Syst Sci 38(2):101-113
    • (2007) Int J Syst Sci , vol.38 , pp. 101-113
    • Hong, X.1    Mitchell, R.J.2
  • 17
    • 0001001098 scopus 로고    scopus 로고
    • Feature selection for SVMs
    • Leen TK, Dietterich TG, Tresp V (eds) MIT Press, Cambridge
    • Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V (2000) Feature selection for SVMs. In: Leen TK, Dietterich TG, Tresp V (eds) NIPS. MIT Press, Cambridge, pp 668-674
    • (2000) NIPS , pp. 668-674
    • Weston, J.1    Mukherjee, S.2    Chapelle, O.3    Pontil, M.4    Poggio, T.5    Vapnik, V.6
  • 18
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • Springer, Heidelberg
    • Neal RM (1996) Bayesian learning for neural networks. LNS, vol 118. Springer, Heidelberg
    • (1996) LNS , vol.118
    • Neal, R.M.1
  • 19
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for support vector machines, gaussian processes and other kernel classifiers
    • Solla SA, Leen TK, Müller K-R (eds) The MIT Press, Cambridge
    • Seeger M (1999) Bayesian model selection for support vector machines, gaussian processes and other kernel classifiers. In: Solla SA, Leen TK, Müller K-R (eds) NIPS. The MIT Press, Cambridge, pp 603-609
    • (1999) NIPS , pp. 603-609
    • Seeger, M.1
  • 21
    • 30044450197 scopus 로고    scopus 로고
    • Feature selection and dualities in maximum entropy discrimination
    • Morgan Kaufmann Publ. Inc, San Francisco
    • Jebara T, Jaakkola T (2000) Feature selection and dualities in maximum entropy discrimination. In: Proc. 16th conf. on uncertainty in artif. intell. Morgan Kaufmann Publ. Inc, San Francisco, pp 291-300
    • (2000) Proc. 16th Conf. on Uncertainty in Artif. Intell. , pp. 291-300
    • Jebara, T.1    Jaakkola, T.2
  • 22
    • 33646800222 scopus 로고    scopus 로고
    • A two-stage algorithm for identification of nonlinear dynamic systems
    • 7
    • Li K, Peng J, Bai E (2006) A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 42(7):1189-1197
    • (2006) Automatica , vol.42 , pp. 1189-1197
    • Li, K.1    Peng, J.2    Bai, E.3
  • 24
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. J Mach Learn Res 1:211-244
    • (2001) J Mach Learn Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 27
    • 37749006178 scopus 로고    scopus 로고
    • Stagewise lasso
    • Zhao P, Yu B (2007) Stagewise lasso. J Mach Learn Res 8:2701-2726
    • (2007) J Mach Learn Res , vol.8 , pp. 2701-2726
    • Zhao, P.1    Yu, B.2
  • 29
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • 3
    • Osborne M, Presnell B, Turlach B (2000) A new approach to variable selection in least squares problems. J Numer Anal 20(3):389-403
    • (2000) J Numer Anal , vol.20 , pp. 389-403
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 32
    • 33845663097 scopus 로고    scopus 로고
    • An accurate and interpretable model for sirna efficacy prediction
    • Vert J-P, Foveau N, Lajaunie C, Vandenbrouck Y (2006) An accurate and interpretable model for sirna efficacy prediction. BMC Bioinf 7:520-537
    • (2006) BMC Bioinf , vol.7 , pp. 520-537
    • Vert, J.-P.1    Foveau, N.2    Lajaunie, C.3    Vandenbrouck, Y.4
  • 34
    • 27744565003 scopus 로고    scopus 로고
    • Classification and selection of biomarkers in genomic data using lasso
    • Ghosh D, Chinnaiyan A (2005) Classification and selection of biomarkers in genomic data using lasso. J Biomed Biotechnol 2005(2):147-54
    • (2005) J Biomed Biotechnol , Issue.2 , pp. 147-54
    • Ghosh, D.1    Chinnaiyan, A.2
  • 38
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28:337-374
    • (2000) Ann Stat , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 40
    • 34147169440 scopus 로고    scopus 로고
    • Class separability in spaces reduced by feature selection
    • IEEE Computer Society
    • Pranckeviciene E, Ho T, Somorjai RL (2006) Class separability in spaces reduced by feature selection. In: ICPR (3). IEEE Computer Society, pp 254-257
    • (2006) ICPR , Issue.3 , pp. 254-257
    • Pranckeviciene, E.1    Ho, T.2    Somorjai, R.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.