메뉴 건너뛰기




Volumn 38, Issue 2, 2007, Pages 101-113

Backward elimination model construction for regression and classification using leave-one-out criteria

Author keywords

Backward elimination; Classification; Cross validation; Forward regression; System identification

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); ERROR ANALYSIS; IDENTIFICATION (CONTROL SYSTEMS); OPTIMIZATION; REGRESSION ANALYSIS;

EID: 33847074971     PISSN: 00207721     EISSN: 14645319     Source Type: Journal    
DOI: 10.1080/00207720601051463     Document Type: Article
Times cited : (17)

References (32)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and dat augumentation and a method for prediction
    • D.M. Allen, "The relationship between variable selection and dat augumentation and a method for prediction", Technometrics, 16, pp. 125-127, 1974.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P. L. Barlett, "The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network", IEEE Trans. Inform. Theory, 44, pp. 525-536, 1998.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 525-536
    • Barlett, P.L.1
  • 4
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their applications to non-linear system identification
    • S. Chen, S.A. Billings and W. Luo, "Orthogonal least squares methods and their applications to non-linear system identification", Int. J. Conm, 50, pp. 1873-1896, 1989.
    • (1989) Int. J. Conm , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 5
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • S.S. Chen, D.L. Donoho and M.A. Saunders, "Atomic decomposition by basis pursuit", SIAM Rev., 43, pp. 129-159, 2001.
    • (2001) SIAM Rev , vol.43 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 7
    • 33846063532 scopus 로고    scopus 로고
    • Kernel classifier construction using orthogonal forward selection and boosting with Fisher ratio class separability
    • in press
    • S. Chen, X.X. Wang, X. Hong and C.J. Harris, "Kernel classifier construction using orthogonal forward selection and boosting with Fisher ratio class separability", IEEE Trans. Neural Netw., in press (2006).
    • (2006) IEEE Trans. Neural Netw
    • Chen, S.1    Wang, X.X.2    Hong, X.3    Harris, C.J.4
  • 8
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • S. Chen, Y. Wu and B.L. Luk, "Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks", IEEE Trans. Neural Netw., 10, pp. 1239-1243, 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , pp. 1239-1243
    • Chen, S.1    Wu, Y.2    Luk, B.L.3
  • 13
    • 0041376987 scopus 로고    scopus 로고
    • A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition
    • Hong and C.J. Harris, "A neurofuzzy network knowledge extraction and extended Gram-Schmidt algorithm for model subspace decomposition", IEEE Trans. Fuzzy Sys., 11, pp. 528-541, 2003.
    • (2003) IEEE Trans. Fuzzy Sys , vol.11 , pp. 528-541
    • Hong1    Harris, C.J.2
  • 14
    • 0031222638 scopus 로고    scopus 로고
    • Givens rotation based fast backward elimination algorithm for RBF neural networks pruning
    • Hong, and S.A. Billings, "Givens rotation based fast backward elimination algorithm for RBF neural networks pruning", IEE Proc. - Contr. Theory Appl., 144, pp. 381-384, 1997.
    • (1997) IEE Proc. - Contr. Theory Appl , vol.144 , pp. 381-384
    • Hong1    Billings, S.A.2
  • 15
    • 33847065687 scopus 로고    scopus 로고
    • Backward elimination methods for associative memory network pruning
    • Hong, C.J. Harris, M. Brown and S. Chen, "Backward elimination methods for associative memory network pruning", Int. J. Hybrid Intellig. Sys., 1, pp. 90-98, 2004.
    • (2004) Int. J. Hybrid Intellig. Sys , vol.1 , pp. 90-98
    • Hong1    Harris, C.J.2    Brown, M.3    Chen, S.4
  • 16
    • 0037861058 scopus 로고    scopus 로고
    • Automatic nonlinear predictive model construction using forward regression and the PRESS statistic
    • Hong, P.M. Sharkey and K. Warwick, "Automatic nonlinear predictive model construction using forward regression and the PRESS statistic", IEE Proc. - Contr. Theory Appl., 150, pp. 245-254, 2003.
    • (2003) IEE Proc. - Contr. Theory Appl , vol.150 , pp. 245-254
    • Hong, P.M.S.1    Warwick, K.2
  • 17
    • 33847039786 scopus 로고    scopus 로고
    • A fast kernel classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate
    • submitted for publication
    • Hong, S. Chen and C.J. Harris, "A fast kernel classifier construction algorithm using orthogonal forward selection to minimize leave-one-out misclassification rate", Int. J. Sys. Sci., submitted for publication, 2005.
    • (2005) Int. J. Sys. Sci
    • Hong, S.C.1    Harris, C.J.2
  • 18
    • 33847013546 scopus 로고    scopus 로고
    • Keerthi, S.S. http://guppy.mpe.nus.edu.sg/mpessk/sparselogreg.shtml, 2006.
    • (2006) Keerthi, S.S
  • 19
    • 0036740269 scopus 로고    scopus 로고
    • RBF neural network center selection based on Fisher ratio class separability measure
    • K.Z. Mao, "RBF neural network center selection based on Fisher ratio class separability measure", IEEE Trans. Neural Netw., 13, pp. 1211-1217, 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , pp. 1211-1217
    • Mao, K.Z.1
  • 22
    • 0004059199 scopus 로고
    • W.T. Miller, R.S. Button and P.J. Werbos Eds, Cambridge, MA: MIT Press
    • W.T. Miller, R.S. Button and P.J. Werbos (Eds) Neural Networks for Control, Cambridge, MA: MIT Press, 1990.
    • (1990) Neural Networks for Control
  • 24
    • 0001132418 scopus 로고
    • Regularisation in the selection of radial basis function centers
    • M.J.L. Orr, "Regularisation in the selection of radial basis function centers", Near. Comput., 7, pp. 954-975, 1995.
    • (1995) Near. Comput , vol.7 , pp. 954-975
    • Orr, M.J.L.1
  • 25
    • 33847068537 scopus 로고    scopus 로고
    • G. Ratsch, http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm, 2006.
    • (2006)
    • Ratsch, G.1
  • 26
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • G. Ratsch, T. Onoda and K.R. Müller, "Soft margins for AdaBoost", Mac. Learn., 42, pp. 287-320, 2001.
    • (2001) Mac. Learn , vol.42 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Müller, K.R.3
  • 27
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gencselection using sparse logistic regression
    • S.K. Shevade, and S.S. Keerthi, "A simple and efficient algorithm for gencselection using sparse logistic regression", Bioinformatics, 19, pp. 2246-2253, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 28
    • 0000629975 scopus 로고
    • Cross validatory choice and assessment of statistical predictions
    • Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974.
    • (1974) J. R. Stast. Soc., Ser. B , vol.36 , pp. 117-147
    • Stone1
  • 29
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani, "Regression shrinkage and selection via the LASSO", J. R. Stat. Soc. Ser. B, 58, pp. 267-288, 1996.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 30
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M.E. Tipping, "Sparse Bayesian learning and the relevance vector machine", J. Mac. Learn. Res., 1, pp. 211-244, 2001.
    • (2001) J. Mac. Learn. Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 32
    • 0003466536 scopus 로고
    • Philadelphia, PA: Society for Industrial and Applied Mathematics
    • G. Wahba, Spline Models for Observational Data, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1990.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.