-
1
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA
-
B. Boser, I. Guyon, and V. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. 4th Annu. ACM Workshop Comput. Learn. Theory, Pittsburgh, PA, 1992, pp. 144-152.
-
(1992)
Proc. 4th Annu. ACM Workshop Comput. Learn. Theory
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
2
-
-
0037822222
-
Asymptotic behaviors of support vector machines with Gaussian kernel
-
S. S.Keerthi and C. J. Lin, "Asymptotic behaviors of support vector machines with Gaussian kernel," Neural Comput., vol. 15, pp. 1667-1689, 2003.
-
(2003)
Neural Comput
, vol.15
, pp. 1667-1689
-
-
Keerthi, S.S.1
Lin, C.J.2
-
3
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn. vol. 20, pp. 273-297, 1995.
-
(1995)
Mach. Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
4
-
-
17444438778
-
New support vector algorithms
-
B. Schölkpof, A. Smola, R. C. Williamson, and P. L. Bartlett, "New support vector algorithms," Neural Comput., vol. 12, pp. 1207-1245, 2000.
-
(2000)
Neural Comput
, vol.12
, pp. 1207-1245
-
-
Schölkpof, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
-
5
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001.
-
(2001)
J. Mach. Learn. Res
, vol.1
, pp. 211-244
-
-
Tipping, M.1
-
6
-
-
0030673582
-
Training support vector machines: An application to face detection
-
E. Osuna, R. Freund, and F. Girosi, "Training support vector machines: An application to face detection," in Proc. Conf. Comput. Vis. Pattern Recognit., 1997, pp. 130-136.
-
(1997)
Proc. Conf. Comput. Vis. Pattern Recognit
, pp. 130-136
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
7
-
-
0002714543
-
Making large-scale SVM learning practical
-
Cambridge, MA: MIT Press
-
T. Joachims, "Making large-scale SVM learning practical," in Advances in Kernel Methods-Support Vector learning. Cambridge, MA: MIT Press, 1999, pp. 169-184.
-
(1999)
Advances in Kernel Methods-Support Vector learning
, pp. 169-184
-
-
Joachims, T.1
-
8
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Cambridge, MA: MIT Press
-
J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
9
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to Platt's SMO algorithm for SVM classifier design," Neural Comput., vol. 13, pp. 637-649, 2001.
-
(2001)
Neural Comput
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
10
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Sep
-
S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to the SMO algorithm for SVM regression," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1188-1194, Sep. 2000.
-
(2000)
IEEE Trans. Neural Netw
, vol.11
, Issue.5
, pp. 1188-1194
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
11
-
-
84925605946
-
The entire regularization path for the support vector machine
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "The entire regularization path for the support vector machine," J. Mach. Learn. Res., vol. 5, pp. 1391-1415, 2004.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
12
-
-
0000897328
-
The kernel-adatron algorithm: A fast simple learning procedure for support vector machine
-
T. T. Friess, N. Cristianini, and C. Campbell, "The kernel-adatron algorithm: A fast simple learning procedure for support vector machine," in Proc. 15th Int. Conf. Mach. Learn., 1998, pp. 188-196.
-
(1998)
Proc. 15th Int. Conf. Mach. Learn
, pp. 188-196
-
-
Friess, T.T.1
Cristianini, N.2
Campbell, C.3
-
13
-
-
1942516515
-
SimpleSVM
-
S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty, "SimpleSVM," in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 760-767.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn
, pp. 760-767
-
-
Vishwanathan, S.V.N.1
Smola, A.J.2
Murty, M.N.3
-
14
-
-
0000913324
-
SVMTorch: Support vector machines for large-scale regression problems
-
R. Collobert and S. Bengio, "SVMTorch: Support vector machines for large-scale regression problems," J. Mach. Learn. Res., vol. 1, pp. 143-160, 2001.
-
(2001)
J. Mach. Learn. Res
, vol.1
, pp. 143-160
-
-
Collobert, R.1
Bengio, S.2
-
15
-
-
0038605699
-
Scaling large learning problems with hard parallel mixtures
-
R. Collobert, S. Bengio, and Y. Bengio, "Scaling large learning problems with hard parallel mixtures," in Int. J. Pattern Recognit. Artif. Intell., 2003, vol. 17, pp. 349-365.
-
(2003)
Int. J. Pattern Recognit. Artif. Intell
, vol.17
, pp. 349-365
-
-
Collobert, R.1
Bengio, S.2
Bengio, Y.3
-
16
-
-
17144374074
-
Fast SVM training algorithm with decomposition on very large data sets
-
Apr
-
J. X. Dong, A. Krzyzak, and C. Y. Suen, "Fast SVM training algorithm with decomposition on very large data sets," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 4, pp. 603-618, Apr. 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.27
, Issue.4
, pp. 603-618
-
-
Dong, J.X.1
Krzyzak, A.2
Suen, C.Y.3
-
17
-
-
84899018011
-
Breaking SVM complexity with cross training
-
G. Bakir, L. Bottou, and J. Weston, "Breaking SVM complexity with cross training," in Proc. 17th Neural Inf. Process. Syst. Conf., 2005, pp. 81-88.
-
(2005)
Proc. 17th Neural Inf. Process. Syst. Conf
, pp. 81-88
-
-
Bakir, G.1
Bottou, L.2
Weston, J.3
-
18
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
A. Bordes, S. Ertekin, J. Weston, and L. Bottou, "Fast kernel classifiers with online and active learning," J. Mach. Learn. Res. vol. 6, pp. 1579-1619, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Weston, J.3
Bottou, L.4
-
19
-
-
21844440579
-
Core vector machines: Fast SVM training on very large datasets
-
I. W. Tsang, J. T. Kwok, and P. M. Cheung, "Core vector machines: Fast SVM training on very large datasets," J. Mach. Learn. Res., vol. 6, pp. 363-392, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.M.3
-
20
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
S. S. Keerthi, O. Chapelle, and D. Decoste, "Building support vector machines with reduced classifier complexity," J. Mach. Learn. Res. vol. 7, pp. 1493-1515, 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1493-1515
-
-
Keerthi, S.S.1
Chapelle, O.2
Decoste, D.3
-
21
-
-
26944464565
-
Training support vector machines using greedy stagewise algorithm
-
Hanoi, Vietnam
-
L. F. Bo, L. Wang, and L. C. Jiao, "Training support vector machines using greedy stagewise algorithm," in Proc. 9th Pacific-Asian Conf. Knowl. Disc. Data Dinning, Hanoi, Vietnam, 2005, pp. 632-638.
-
(2005)
Proc. 9th Pacific-Asian Conf. Knowl. Disc. Data Dinning
, pp. 632-638
-
-
Bo, L.F.1
Wang, L.2
Jiao, L.C.3
-
24
-
-
5844297152
-
Theory of reproducting kernels
-
N. Aronszajn, "Theory of reproducting kernels," Trans. Amer. Math. Soc, vol. 686, pp. 337-404, 1950.
-
(1950)
Trans. Amer. Math. Soc
, vol.686
, pp. 337-404
-
-
Aronszajn, N.1
-
25
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
F. Girosi, "An equivalence between sparse approximation and support vector machines," Neural Comput., vol. 10, pp. 1455-1480, 1998.
-
(1998)
Neural Comput
, vol.10
, pp. 1455-1480
-
-
Girosi, F.1
-
26
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Mar
-
S. Chen, F. Cowan, and P. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
-
(1991)
IEEE Trans. Neural Netw
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, F.2
Grant, P.3
-
27
-
-
0036643065
-
Kernel matching pursuits
-
P. Vincent and Y. Bengio, "Kernel matching pursuits," Mach. Learn. vol. 48, pp. 165-187, 2002.
-
(2002)
Mach. Learn
, vol.48
, pp. 165-187
-
-
Vincent, P.1
Bengio, Y.2
-
28
-
-
34248636293
-
Fast sparse approximation for least square support vector machines
-
May
-
L. C. Jiao, L. F. Bo, and L.Wang, "Fast sparse approximation for least square support vector machines," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 685-697, May 2007.
-
(2007)
IEEE Trans. Neural Netw
, vol.18
, Issue.3
, pp. 685-697
-
-
Jiao, L.C.1
Bo, L.F.2
Wang, L.3
-
29
-
-
0027842081
-
Matching pursuit with time-frequency dictionaries
-
Dec
-
S. Mallat and Z. Zhang, "Matching pursuit with time-frequency dictionaries," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
-
(1993)
IEEE Trans. Signal Process
, vol.41
, Issue.12
, pp. 3397-3415
-
-
Mallat, S.1
Zhang, Z.2
-
30
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Freund, "Boosting a weak learning algorithm by majority," Inf. Comput., vol. 121, pp. 256-285, 1995.
-
(1995)
Inf. Comput
, vol.121
, pp. 256-285
-
-
Freund, Y.1
-
31
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. H. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Statist., vol. 28, pp. 337-407, 2000.
-
(2000)
Ann. Statist
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
32
-
-
84898978212
-
Boosting algorithms as gradient descent
-
Cambridge, MA: MIT Press
-
L. Mason, J. Baxter, P. Bartlett, and M. Frean, "Boosting algorithms as gradient descent," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000, vol. 12, pp. 512-518.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
33
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. H. Friedman, "Greedy function approximation: A gradient boosting machine," Ann. Statist., vol. 29, pp. 1189-1232, 2001.
-
(2001)
Ann. Statist
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
35
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
R. E. Fan, P. H. Chen, and C. J. Lin, "Working set selection using second order information for training support vector machines," J. Mach. Learn. Res., vol. 6, pp. 1889-1918, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1889-1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
36
-
-
0033400675
-
Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
-
J. A. Blackard and D. J. Dean, "Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables," Comput. Electron. Agriculture vol. 24, pp. 131-151, 1999.
-
(1999)
Comput. Electron. Agriculture
, vol.24
, pp. 131-151
-
-
Blackard, J.A.1
Dean, D.J.2
-
38
-
-
0000667930
-
Training v-support vector classifiers: Theory and algorithms
-
C. C. Chang and C. J. Lin, "Training v-support vector classifiers: Theory and algorithms," Neural Comput., vol. 3, pp. 2119-2147, 2001.
-
(2001)
Neural Comput
, vol.3
, pp. 2119-2147
-
-
Chang, C.C.1
Lin, C.J.2
-
39
-
-
0032594959
-
An overview of statistical learning theory
-
Sep
-
V. Vapnik, "An overview of statistical learning theory," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988-999, Sep. 1999.
-
(1999)
IEEE Trans. Neural Netw
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.1
|