메뉴 건너뛰기




Volumn 21, Issue 3, 2008, Pages 426-434

Accuracy and real-time considerations for implementing various virtual metrology algorithms

Author keywords

Back propagation neural networks (BPNN); Multiple regression (MR); Run to run control (R2R control); Simple recurrent neural networks (SRNN); Virtual metrology (VM); Wafer to wafer advanced process control (W2W APC)

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHEMICAL PLANTS; CONTROL THEORY; COST EFFECTIVENESS; ELECTRIC CONDUCTIVITY; FOOD PROCESSING; INTELLIGENT CONTROL; LIQUID CRYSTAL DISPLAYS; MEASUREMENTS; NEURAL NETWORKS; PRODUCTION CONTROL; PRODUCTION ENGINEERING; RECURRENT NEURAL NETWORKS; SEMICONDUCTING INDIUM; SEMICONDUCTOR DEVICE MANUFACTURE; SEMICONDUCTOR MATERIALS; TESTING;

EID: 49249085507     PISSN: 08946507     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSM.2008.2001219     Document Type: Conference Paper
Times cited : (57)

References (22)
  • 1
    • 33749666036 scopus 로고    scopus 로고
    • Application development of virtual metrology in semiconductor industry
    • Raleigh, NC, Nov
    • Y.-C. Chang and F.-T. Cheng, "Application development of virtual metrology in semiconductor industry," in Proc. 31st Annu. Conf. IEEE Industrial Electronics, Raleigh, NC, Nov. 2005, pp. 124-129.
    • (2005) Proc. 31st Annu. Conf. IEEE Industrial Electronics , pp. 124-129
    • Chang, Y.-C.1    Cheng, F.-T.2
  • 4
    • 38949115522 scopus 로고    scopus 로고
    • Virtual metrology and your technology watch list: Ten things you should know about this emerging technology
    • Jan, sec. 4
    • A. Weber, "Virtual metrology and your technology watch list: Ten things you should know about this emerging technology," Future Fab Int., no. 22, pp. 52-54, Jan. 2007, sec. 4.
    • (2007) Future Fab Int , Issue.22 , pp. 52-54
    • Weber, A.1
  • 5
    • 0034313462 scopus 로고    scopus 로고
    • Real-time control of reactive ion etching using neural networks
    • Nov
    • D. Strokes and G. S. May, "Real-time control of reactive ion etching using neural networks," IEEE Trans. Semicond Manuf., vol. 13, no. 4, pp. 469-480, Nov. 2000.
    • (2000) IEEE Trans. Semicond Manuf , vol.13 , Issue.4 , pp. 469-480
    • Strokes, D.1    May, G.S.2
  • 7
    • 0027592466 scopus 로고
    • Advantages of plasma etch modeling using neural networks over statistical techniques
    • May
    • C. D. Himmel and G. S. May, "Advantages of plasma etch modeling using neural networks over statistical techniques," IEEE Trans. Semicond Manuf., vol. 6, no. 2, pp. 103-111, May 1993.
    • (1993) IEEE Trans. Semicond Manuf , vol.6 , Issue.2 , pp. 103-111
    • Himmel, C.D.1    May, G.S.2
  • 8
    • 33646725309 scopus 로고    scopus 로고
    • A processing quality prognostics scheme for plasma sputtering in TFT-LCD manufacturing
    • May
    • Y.-C. Su, M.-H. Hung, F.-T. Cheng, and Y.-T. Chen, "A processing quality prognostics scheme for plasma sputtering in TFT-LCD manufacturing," IEEE Trans. Semicond Manuf., vol. 19, no. 2, pp. 183-194, May 2006.
    • (2006) IEEE Trans. Semicond Manuf , vol.19 , Issue.2 , pp. 183-194
    • Su, Y.-C.1    Hung, M.-H.2    Cheng, F.-T.3    Chen, Y.-T.4
  • 9
    • 0035897276 scopus 로고    scopus 로고
    • An optimal neural network plasma model: A case study
    • Jan
    • B. Kim and S. Park, "An optimal neural network plasma model: A case study," Chemometrics and Intelligent Laboratory Systems, vol. 56, pp. 39-50, Jan. 2001.
    • (2001) Chemometrics and Intelligent Laboratory Systems , vol.56 , pp. 39-50
    • Kim, B.1    Park, S.2
  • 10
    • 1442312051 scopus 로고    scopus 로고
    • Prediction of plasma etching using a polynomial neural network
    • Dec
    • B. Kim, D. W. Kim, and G. T. Park, "Prediction of plasma etching using a polynomial neural network," IEEE Trans. Plasma Sci., vol. 31, no. 6, pp. 1330-1336, Dec. 2003.
    • (2003) IEEE Trans. Plasma Sci , vol.31 , Issue.6 , pp. 1330-1336
    • Kim, B.1    Kim, D.W.2    Park, G.T.3
  • 11
    • 0035245520 scopus 로고    scopus 로고
    • Modeling plasma equipment using neural networks
    • Feb
    • B. Kim and G. T. Park, "Modeling plasma equipment using neural networks," IEEE Trans. Plasma Sci., vol. 29, pp. 8-12, Feb. 2001.
    • (2001) IEEE Trans. Plasma Sci , vol.29 , pp. 8-12
    • Kim, B.1    Park, G.T.2
  • 12
    • 0032495058 scopus 로고    scopus 로고
    • Simple recurrent neural network: A neural network structure for control systems
    • Jul
    • R. P. Hern'andez, J. A. Gallegos, and J. A. Hern'andez Reyes, "Simple recurrent neural network: A neural network structure for control systems," Neurocomputing, vol. 23, pp. 277-289, Jul. 1998.
    • (1998) Neurocomputing , vol.23 , pp. 277-289
    • Hern'andez, R.P.1    Gallegos, J.A.2    Hern'andez Reyes, J.A.3
  • 14
    • 38949117544 scopus 로고    scopus 로고
    • Evaluating reliance level of a virtual metrology system
    • Feb
    • F.-T. Cheng, Y.-T. Chen, Y.-C. Su, and D.-L. Zeng, "Evaluating reliance level of a virtual metrology system," IEEE Trans. Semicond. Manuf., vol. 21, no. 1, pp. 92-103, Feb. 2008.
    • (2008) IEEE Trans. Semicond. Manuf , vol.21 , Issue.1 , pp. 92-103
    • Cheng, F.-T.1    Chen, Y.-T.2    Su, Y.-C.3    Zeng, D.-L.4
  • 17
    • 34347398446 scopus 로고    scopus 로고
    • A novel virtual metrology scheme for predicting CVD thickness in semiconductor manufacturing
    • Jun
    • M.-H. Hung, T.-H. Lin, F.-T. Cheng, and R.-C. Lin, "A novel virtual metrology scheme for predicting CVD thickness in semiconductor manufacturing," IEEE/ASME Trans. Mechatron., vol. 12, no. 3, pp. 308-316, Jun. 2007.
    • (2007) IEEE/ASME Trans. Mechatron , vol.12 , Issue.3 , pp. 308-316
    • Hung, M.-H.1    Lin, T.-H.2    Cheng, F.-T.3    Lin, R.-C.4
  • 19
    • 0011761275 scopus 로고    scopus 로고
    • Artificial Intelligence-A Guide to Intelligent Systems
    • 2nd ed, MA: Addison-Wesley
    • M. Negnevitsky, Artificial Intelligence-A Guide to Intelligent Systems, 2nd ed. Readington, MA: Addison-Wesley, 2005.
    • (2005) Readington
    • Negnevitsky, M.1
  • 21
    • 0032043525 scopus 로고    scopus 로고
    • The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression
    • I. S. Markham and T. R. Rakes, "The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression," Computers Ops. Res., vol. 25, no. 4, pp. 251-263, 1998.
    • (1998) Computers Ops. Res , vol.25 , Issue.4 , pp. 251-263
    • Markham, I.S.1    Rakes, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.