메뉴 건너뛰기




Volumn 2, Issue 2, 2008, Pages 7-

Joint cluster analysis of attribute data and relationship data: The connected k-center problem, algorithms and applications

Author keywords

Approximation algorithms; Attribute data; Community identification; Document clustering; Joint cluster analysis; Market segmentation; NP hardness; Relationship data

Indexed keywords

APPROXIMABILITY; AS RELATIONSHIP; ATTRIBUTE DATA; CLUSTERING MODELS; COMMUNITY IDENTIFICATION; COMPLEMENTARY INFORMATION; CONSTANT-FACTOR APPROXIMATION ALGORITHMS; DATA TYPING; DOCUMENT CLUSTERING; EXPERIMENTAL EVALUATIONS; JOINT CLUSTER ANALYSIS; K-CENTER; K-CENTER PROBLEM; MARKET SEGMENTATION; METABOLIC NETWORKS; NP-HARDNESS; OPTIMAL SOLUTIONS; POLYNOMIAL-TIME; REAL DATABASES; REAL DATASETS; RELATIONSHIP DATA; SOCIAL NETWORKS; TREE STRUCTURES;

EID: 49149121323     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (57)
  • 1
    • 0042956736 scopus 로고    scopus 로고
    • Exact and approximation algorithms for clustering
    • A GALRWAL, P. AND PROCOPIUC, C. M. 2002. Exact and approximation algorithms for clustering. Algorithmica 33, 2, 201-226.
    • (2002) Algorithmica , vol.33 , Issue.2 , pp. 201-226
    • A GALRWAL, P.1    PROCOPIUC, C.M.2
  • 3
    • 0037102646 scopus 로고    scopus 로고
    • Evolution of the social network of scientific collaborations
    • BARABASI, A. L., JEONG, H., NEDA, Z., RAVASZ, E., SCHUBERT, A., AND VICSEKS, T. 2002. Evolution of the social network of scientific collaborations. Physica A 311, 3-4, 590-614.
    • (2002) Physica A , vol.311 , Issue.3-4 , pp. 590-614
    • BARABASI, A.L.1    JEONG, H.2    NEDA, Z.3    RAVASZ, E.4    SCHUBERT, A.5    VICSEKS, T.6
  • 4
    • 0034825991 scopus 로고    scopus 로고
    • BARTAL, Y., CHARIKAR, M.,AND RAZ,D. 2001. Approximating min-sumk-clusteringinmetric spaces. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing (Hersonissos, Greece). ACM, New York, 11-20.
    • BARTAL, Y., CHARIKAR, M.,AND RAZ,D. 2001. Approximating min-sumk-clusteringinmetric spaces. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing (Hersonissos, Greece). ACM, New York, 11-20.
  • 8
    • 0001773546 scopus 로고
    • On the complexity of clustering problems
    • R. Hehn, B. Korte, and W. Oettli, Eds. Springer-Verlag, Berlin, Germany
    • BRUCKER, P. 1977. On the complexity of clustering problems. In Optimization and Operations Research, R. Hehn, B. Korte, and W. Oettli, Eds. Springer-Verlag, Berlin, Germany, 45-54.
    • (1977) Optimization and Operations Research , pp. 45-54
    • BRUCKER, P.1
  • 10
    • 23844463259 scopus 로고    scopus 로고
    • A constant factor approximation algorithm for the k-median problem
    • CHARIKAR, M., GUHA, S., TARDOS, E., AND SHMOYS, D. 1999. A constant factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci. 65, 1, 129-149.
    • (1999) J. Comput. Syst. Sci , vol.65 , Issue.1 , pp. 129-149
    • CHARIKAR, M.1    GUHA, S.2    TARDOS, E.3    SHMOYS, D.4
  • 11
    • 1842458342 scopus 로고    scopus 로고
    • Clustering to minimize the sum of cluster diameters
    • CHARIKAR, M. AND PANIGRAHY, R. 2004. Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci. 68, 2, 417-441.
    • (2004) J. Comput. Syst. Sci , vol.68 , Issue.2 , pp. 417-441
    • CHARIKAR, M.1    PANIGRAHY, R.2
  • 13
    • 84880095768 scopus 로고    scopus 로고
    • Clustering with constraints: Feasibility issues and the k-means algorithm
    • Newport Beach, CA, Society for Industrial and Applied Mathematics, Philadelphia, PA
    • DAVIDSON, I. AND RAVI , S. S. 2005. Clustering with constraints: Feasibility issues and the k-means algorithm. In Proceedings of the 5th SIAM International Conference on Data Mining (Newport Beach, CA). Society for Industrial and Applied Mathematics, Philadelphia, PA, 138-149.
    • (2005) Proceedings of the 5th SIAM International Conference on Data Mining , pp. 138-149
    • DAVIDSON, I.1    RAVI, S.S.2
  • 17
    • 0022012617 scopus 로고
    • A simple heuristic for the p-center problem
    • DYER, M. AND FRIEZE, A. M. 1985. A simple heuristic for the p-center problem. Oper. Res. Lett. 3, 285-288.
    • (1985) Oper. Res. Lett , vol.3 , pp. 285-288
    • DYER, M.1    FRIEZE, A.M.2
  • 18
    • 33745484604 scopus 로고    scopus 로고
    • Joint cluster analysis of attribute data and relationship data: The connected k-center problem
    • Bethesda, MD, Society for Industrial and Applied Mathematics, Philadelphia, PA
    • ESTER, M., GE, R., GAO, B. J., HU, Z., AND BEN-MOSHE, B. 2006. Joint cluster analysis of attribute data and relationship data: the connected k-center problem. In Proceedings of the 6th SIAM Conference on Data Mining (Bethesda, MD). Society for Industrial and Applied Mathematics, Philadelphia, PA, 246-257.
    • (2006) Proceedings of the 6th SIAM Conference on Data Mining , pp. 246-257
    • ESTER, M.1    GE, R.2    GAO, B.J.3    HU, Z.4    BEN-MOSHE, B.5
  • 19
    • 49149115569 scopus 로고    scopus 로고
    • ESTER, M., KRIEGEL, H., Sander, J., and XU, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (Portland, OR). AAAI Press, 226-231.
    • ESTER, M., KRIEGEL, H., Sander, J., and XU, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (Portland, OR). AAAI Press, 226-231.
  • 21
    • 49149130394 scopus 로고
    • Optimal algorithms for generating quantile information in x + y and matrices with sorted columns
    • The Johns Hopkins Univ, Baltimore, MD
    • FREDERICKSON, G. N. AND JOHNSON, D. B. 1979. Optimal algorithms for generating quantile information in x + y and matrices with sorted columns. In Proceedings of the 13th Annual Conference on Information Science and Systems. The Johns Hopkins Univ., Baltimore, MD, 47-52.
    • (1979) Proceedings of the 13th Annual Conference on Information Science and Systems , pp. 47-52
    • FREDERICKSON, G.N.1    JOHNSON, D.B.2
  • 22
    • 0021938963 scopus 로고
    • Clusteringtominimize the maximum inter-cluster distance
    • GONZALEZ,T. 1985. Clusteringtominimize the maximum inter-cluster distance.Theoret. Comput. Sci. 38, 2-3, 293-306.
    • (1985) Theoret. Comput. Sci , vol.38 , Issue.2-3 , pp. 293-306
    • GONZALEZ, T.1
  • 23
    • 0032652570 scopus 로고    scopus 로고
    • Rock: A robust clustering algorithm for categorical attributes
    • Sydney, Austrialia, IEEE Computer Society, Los Alamitos, CA
    • GUHA, S., RASTOGI, R., AND SHIM, K. 1999. Rock: A robust clustering algorithm for categorical attributes. In Proceedings of the 15th International Conference on Data Engineering (Sydney, Austrialia). IEEE Computer Society, Los Alamitos, CA, 512-521.
    • (1999) Proceedings of the 15th International Conference on Data Engineering , pp. 512-521
    • GUHA, S.1    RASTOGI, R.2    SHIM, K.3
  • 24
    • 0001225295 scopus 로고    scopus 로고
    • Approximation algorithms for min-sum p-clustering
    • GUTTMAN-BECK, N. AND HASSIN, R. 1998. Approximation algorithms for min-sum p-clustering. Disc. Appl. Math. 89, 1-3, 125-142.
    • (1998) Disc. Appl. Math , vol.89 , Issue.1-3 , pp. 125-142
    • GUTTMAN-BECK, N.1    HASSIN, R.2
  • 25
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • HANISCH, D., ZIEN, A., ZIMMER, R., AND LENGAUER, T. 2002. Co-clustering of biological networks and gene expression data. Bioinformatics 18, S145-S154.
    • (2002) Bioinformatics , vol.18
    • HANISCH, D.1    ZIEN, A.2    ZIMMER, R.3    LENGAUER, T.4
  • 27
    • 0034515528 scopus 로고    scopus 로고
    • A clustering algorithm based on graph connectivity
    • HARTUV, E. AND SHAMIR, R. 2000. A clustering algorithm based on graph connectivity. Inf. Proc. Lett. 76, 4-6, 175-181.
    • (2000) Inf. Proc. Lett , vol.76 , Issue.4-6 , pp. 175-181
    • HARTUV, E.1    SHAMIR, R.2
  • 28
    • 0022064511 scopus 로고
    • A best possible heuristic for the k-center problem
    • HOCHBAUM, D. AND SHMOYS, D. 1985. A best possible heuristic for the k-center problem. Math. Oper. Res. 10, 180-184.
    • (1985) Math. Oper. Res , vol.10 , pp. 180-184
    • HOCHBAUM, D.1    SHMOYS, D.2
  • 31
    • 0000682161 scopus 로고    scopus 로고
    • Approximation algorithms for metric facility location and k-median problems using the primal-dual scheme and lagrangian relaxation
    • JAIN, K. AND VAZIRANI, V. 2001. Approximation algorithms for metric facility location and k-median problems using the primal-dual scheme and lagrangian relaxation. J. ACM 48, 2, 274-296.
    • (2001) J. ACM , vol.48 , Issue.2 , pp. 274-296
    • JAIN, K.1    VAZIRANI, V.2
  • 32
    • 0018678438 scopus 로고
    • An algorithmic approach to network location problems, Part II: P-medians
    • KARIV, O. AND HAKIMI, S. L. 1979. An algorithmic approach to network location problems, Part II: p-medians. SIAM J. Appl. Math. 37, 539-560.
    • (1979) SIAM J. Appl. Math , vol.37 , pp. 539-560
    • KARIV, O.1    HAKIMI, S.L.2
  • 33
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • KARYPIS, G., HAN, E., AND KUMAR, V. 1999. Chameleon: Hierarchical clustering using dynamic modeling. IEEE Comput. 32, 8, 68-75.
    • (1999) IEEE Comput , vol.32 , Issue.8 , pp. 68-75
    • KARYPIS, G.1    HAN, E.2    KUMAR, V.3
  • 36
    • 0000086749 scopus 로고
    • Approximation algorithms for geometric median problems
    • LIN, J. AND VITTER, J. 1992. Approximation algorithms for geometric median problems. Inf. Proc. Lett. 44, 5, 245-249.
    • (1992) Inf. Proc. Lett , vol.44 , Issue.5 , pp. 245-249
    • LIN, J.1    VITTER, J.2
  • 37
    • 0020102027 scopus 로고
    • Least squares quantization in pcm
    • LLOYD, S. 1982. Least squares quantization in pcm. IEEE Trans. Inf. Theory 28, 2, 129-136.
    • (1982) IEEE Trans. Inf. Theory , vol.28 , Issue.2 , pp. 129-136
    • LLOYD, S.1
  • 39
    • 0021373110 scopus 로고
    • On the complexity of some common geometric location problems
    • MEGIDDO, N. AND SUPOWIT, K. J. 1984. On the complexity of some common geometric location problems. SIAM Journal on Computing 13, 1, 182-196.
    • (1984) SIAM Journal on Computing , vol.13 , Issue.1 , pp. 182-196
    • MEGIDDO, N.1    SUPOWIT, K.J.2
  • 40
    • 0001046401 scopus 로고
    • 2 n) algorithm for the k-th longest path in a tree with applications to location problems
    • 2 n) algorithm for the k-th longest path in a tree with applications to location problems. SIAM J. Comput. 10, 2, 328-337.
    • (1981) SIAM J. Comput , vol.10 , Issue.2 , pp. 328-337
    • MEGIDDO, N.1    TAMIR, A.2    ZEMEL, E.3    CHANDRASEKARAN, R.4
  • 42
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Santiago de Chile, Chile, Morgan Kaufmann, San Francisco, CA
    • NG, R. T. AND HAN, J. 1994. Efficient and effective clustering methods for spatial data mining. In Proceedings of the 20th International Conference on Very Large Data Bases (Santiago de Chile, Chile). Morgan Kaufmann, San Francisco, CA, 144-155.
    • (1994) Proceedings of the 20th International Conference on Very Large Data Bases , pp. 144-155
    • NG, R.T.1    HAN, J.2
  • 44
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • SEGAL, E., WANG, H., AND KOLLER, D. 2003. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics (Suppl. 1) 19, 264-272.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1 , pp. 264-272
    • SEGAL, E.1    WANG, H.2    KOLLER, D.3
  • 46
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • SPELLMAN, P. T., SHERLOCK, G., ZHANG, M. Q., IYER, V. R., ANDERS, K., EISEN, M. B., BROWN, P. O., BOTSTEIN, D., AND FUTCHER, B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molec. Biol. Cell 9, 12, 3273-3297.
    • (1998) Molec. Biol. Cell , vol.9 , Issue.12 , pp. 3273-3297
    • SPELLMAN, P.T.1    SHERLOCK, G.2    ZHANG, M.Q.3    IYER, V.R.4    ANDERS, K.5    EISEN, M.B.6    BROWN, P.O.7    BOTSTEIN, D.8    FUTCHER, B.9
  • 49
    • 49149122116 scopus 로고    scopus 로고
    • STEINHAUS, H. 1956. Sur la division des corp materiels en parties. Bulletin L'Acadmie Polonaise des Science C1. III, IV, 801-804.
    • STEINHAUS, H. 1956. Sur la division des corp materiels en parties. Bulletin L'Acadmie Polonaise des Science C1. III, IV, 801-804.
  • 50
    • 20744448143 scopus 로고    scopus 로고
    • Primal-dual algorithms for connected facility location problems
    • SWAMY, C., AND KUMAR, A. 2004. Primal-dual algorithms for connected facility location problems. Algorithmica 40, 4, 245-269.
    • (2004) Algorithmica , vol.40 , Issue.4 , pp. 245-269
    • SWAMY, C.1    KUMAR, A.2
  • 51
    • 0030216223 scopus 로고    scopus 로고
    • 2) algorithm for the p-median and related problems on tree graphs
    • 2) algorithm for the p-median and related problems on tree graphs. Operations Research Letters 19, 59-64.
    • (1996) Operations Research Letters , vol.19 , pp. 59-64
    • TAMIR, A.1
  • 53
    • 0001599923 scopus 로고
    • The location of emergency service facilities
    • TOREGAS, C., SWAN, R., REVELLE, C., AND BERGMAN, L. 1971. The location of emergency service facilities. Oper. Res. 19, 1363-1373.
    • (1971) Oper. Res , vol.19 , pp. 1363-1373
    • TOREGAS, C.1    SWAN, R.2    REVELLE, C.3    BERGMAN, L.4
  • 54
    • 84949423737 scopus 로고    scopus 로고
    • TUNG, A. K. H., NG, R. T., LAKSHMANAN, L. V. S., AND HAN, J. 2001. Constraint-based clustering in large databases. In Proceedings of the 8th International Conference on Database Theory (London, UK). Springer-Verlag, New York, 405-419.
    • TUNG, A. K. H., NG, R. T., LAKSHMANAN, L. V. S., AND HAN, J. 2001. Constraint-based clustering in large databases. In Proceedings of the 8th International Conference on Database Theory (London, UK). Springer-Verlag, New York, 405-419.
  • 55
    • 34548742517 scopus 로고    scopus 로고
    • Identification of functional modules using network topology and high-throughput data
    • ULITSKY, I. AND SHAMIR, R. 2007. Identification of functional modules using network topology and high-throughput data. BMC System Biology 1, 8.
    • (2007) BMC System Biology , vol.1 , pp. 8
    • ULITSKY, I.1    SHAMIR, R.2
  • 57
    • 85127741944 scopus 로고    scopus 로고
    • WEBSTER, C.ANDMORRISON,P. 2004. Network analysisinmarketing.Australasian Market. J. 12,2, 8-18.
    • WEBSTER, C.ANDMORRISON,P. 2004. Network analysisinmarketing.Australasian Market. J. 12,2, 8-18.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.