메뉴 건너뛰기




Volumn , Issue , 2007, Pages 510-519

Joint cluster analysis of attribute and relationship data withouta-priori specification of the number of clusters

Author keywords

Algorithms; Clustering; Community identification; Graph structured data; Hotspot analysis; Joint cluster analysis

Indexed keywords

COMMUNITY IDENTIFICATION; GRAPH-STRUCTURED DATA; HOTSPOT ANALYSIS; JOINT CLUSTER ANALYSIS;

EID: 36849038426     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281248     Document Type: Conference Paper
Times cited : (34)

References (31)
  • 1
    • 0347172110 scopus 로고    scopus 로고
    • Optics: Ordering points to identify the clustering structure
    • M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: ordering points to identify the clustering structure. In SIGMOD, 1999.
    • (1999) SIGMOD
    • Ankerst, M.1    Breunig, M.2    Kriegel, H.-P.3    Sander, J.4
  • 3
    • 0002550769 scopus 로고    scopus 로고
    • Refining initial points for k-means clustering
    • P. S. Bradley and U. M. Fayyad. Refining initial points for k-means clustering. In ICML, 1998.
    • (1998) ICML
    • Bradley, P.S.1    Fayyad, U.M.2
  • 5
    • 36849034557 scopus 로고    scopus 로고
    • C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik. Blobworld: A system for region-based image indexing and retrieval. In VIS. Springer, 1999.
    • C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik. Blobworld: A system for region-based image indexing and retrieval. In VIS. Springer, 1999.
  • 6
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data clustering
    • C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max cut algorithm for graph partitioning and data clustering. ICDM, 2001.
    • (2001) ICDM
    • Ding, C.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.5
  • 8
    • 33745484604 scopus 로고    scopus 로고
    • M. Ester, R. Ge, B. J. Gao, Z. Hu, and B. Ben-Moshe. Joint cluster analysis of attribute data and relationship data: the connected k-center problem. In SDM, 2006.
    • M. Ester, R. Ge, B. J. Gao, Z. Hu, and B. Ben-Moshe. Joint cluster analysis of attribute data and relationship data: the connected k-center problem. In SDM, 2006.
  • 9
    • 36849094580 scopus 로고    scopus 로고
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, 1996.
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, 1996.
  • 13
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large databases. In SIGMOD, 1998.
    • (1998) SIGMOD
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 14
    • 0034228041 scopus 로고    scopus 로고
    • Rock: A robust clustering algorithm for categorical attributes
    • S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categorical attributes. In Information Systems, 2000.
    • (2000) Information Systems
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 18
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic modeling. IEEE Computer, 1999.
    • (1999) IEEE Computer
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 21
    • 0035895239 scopus 로고    scopus 로고
    • The structure of scientific collaboration networks
    • M. Newman. The structure of scientific collaboration networks. In Proc. Natl. Acad. Sci. 98, 2001.
    • (2001) Proc. Natl. Acad. Sci. 98
    • Newman, M.1
  • 22
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review, 2004.
    • (2004) Physical Review
    • Newman, M.E.J.1    Girvan, M.2
  • 23
    • 33745842189 scopus 로고    scopus 로고
    • The sanet toolbox: New methods for network spatial analysis
    • Blackwell Publishing, July
    • A. Okabe, K.-I. Okunuki, and S. Shino. The sanet toolbox: New methods for network spatial analysis. In Transactions in GIS. Blackwell Publishing, July 2006.
    • (2006) Transactions in GIS
    • Okabe, A.1    Okunuki, K.-I.2    Shino, S.3
  • 24
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending k-means with efficient estimation of the number of clusters
    • San Francisco
    • D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number of clusters. In ICML, San Francisco, 2000.
    • (2000) ICML
    • Pelleg, D.1    Moore, A.2
  • 29
    • 0024926610 scopus 로고
    • Towards efficient hierarchical designs by ratio cut partitioning
    • Y. Wei and C. Cheng. Towards efficient hierarchical designs by ratio cut partitioning. In IEEE Conf. on Computer-Aided Design, 1989.
    • (1989) IEEE Conf. on Computer-Aided Design
    • Wei, Y.1    Cheng, C.2
  • 30
    • 84880106426 scopus 로고    scopus 로고
    • S. White and P. Smyth. A spectral clustering approach to finding comm. in graphs. In SDM, 2005.
    • S. White and P. Smyth. A spectral clustering approach to finding comm. in graphs. In SDM, 2005.
  • 31
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for very large databases. In SIGMOD, 1996.
    • (1996) SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.