메뉴 건너뛰기




Volumn , Issue , 2007, Pages 15-22

GenMiner: Mining informative association rules from genomic data

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATIVE PROCESSING; BIOCOMMUNICATIONS; BIOINFORMATICS; DATA REDUCTION; GENE EXPRESSION; INFORMATION SCIENCE; LAWS AND LEGISLATION;

EID: 49049091935     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBM.2007.49     Document Type: Conference Paper
Times cited : (22)

References (33)
  • 1
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. VLDB conf., pages 478-499, 1994.
    • (1994) Proc. VLDB conf , pp. 478-499
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 0035367064 scopus 로고    scopus 로고
    • Whole-genome expression analysis: Challenges beyond clustering
    • R. Altman and S. Raychaudhuri. Whole-genome expression analysis: challenges beyond clustering. Current Opinion Structural Biology, 11:340-347, 2001.
    • (2001) Current Opinion Structural Biology , vol.11 , pp. 340-347
    • Altman, R.1    Raychaudhuri, S.2
  • 3
    • 0242280305 scopus 로고
    • Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte carlo evidence
    • A. Bera and C. Jarque. Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte carlo evidence. Economics Letters, 7:313-318, 1981.
    • (1981) Economics Letters , vol.7 , pp. 313-318
    • Bera, A.1    Jarque, C.2
  • 4
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In Proc. ACM SIGMOD conf., pages 255-264, 1997.
    • (1997) Proc. ACM SIGMOD conf , pp. 255-264
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 6
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • C. Creighton and S. Hanansh. Mining gene expression databases for association rules. Bioinformatics, 19:79-86, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 79-86
    • Creighton, C.1    Hanansh, S.2
  • 7
    • 78149312575 scopus 로고    scopus 로고
    • Generating an informative cover for association rules
    • L. Cristofor and D. A. Simovici. Generating an informative cover for association rules. In Proc. ICDM conf., pages 597-600, 2002.
    • (2002) Proc. ICDM conf , pp. 597-600
    • Cristofor, L.1    Simovici, D.A.2
  • 8
    • 27144434505 scopus 로고    scopus 로고
    • A. davierwala, J. Haynes, B. Li, R. Brost, M. Robinson, and L. e. a. Yu. The synthetic genetic interation spectrum of essential genes. Nature Genetics, 37(10):1147-52, 2005.
    • A. davierwala, J. Haynes, B. Li, R. Brost, M. Robinson, and L. e. a. Yu. The synthetic genetic interation spectrum of essential genes. Nature Genetics, 37(10):1147-52, 2005.
  • 9
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • J. DeRisi, L. Iyer, and V. Brown. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278:680-686, 1997.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.1    Iyer, L.2    Brown, V.3
  • 11
    • 0037057374 scopus 로고    scopus 로고
    • Exploring the conditional corregulation of yeast gene expression through fuzzy k-means clustering
    • A. Gasch and M. Eisen. Exploring the conditional corregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology, 3:1-22, 2002.
    • (2002) Genome Biology , vol.3 , pp. 1-22
    • Gasch, A.1    Eisen, M.2
  • 12
    • 27544508838 scopus 로고    scopus 로고
    • Analyzing microarray data using quantitative association rules
    • E. Georgi, L. Richter, U. Ruckert, and S. Kramer. Analyzing microarray data using quantitative association rules. Bioinformatics, 21:123-129, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 123-129
    • Georgi, E.1    Richter, L.2    Ruckert, U.3    Kramer, S.4
  • 13
    • 84946031884 scopus 로고
    • Procedures for detecting outlying observations in samples
    • F. Grubbs. Procedures for detecting outlying observations in samples. Technometrics, 11:1-21, 1969.
    • (1969) Technometrics , vol.11 , pp. 1-21
    • Grubbs, F.1
  • 14
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological networks and gene expression data. Bioinformatics, 18:S145-S154, 2002.
    • (2002) Bioinformatics , vol.18
    • Hanisch, D.1    Zien, A.2    Zimmer, R.3    Lengauer, T.4
  • 15
    • 8844220454 scopus 로고    scopus 로고
    • Mining gene expression data for positive and negative co-regulated gene clusters
    • L. Ji and K. Tan. Mining gene expression data for positive and negative co-regulated gene clusters. Bioinformatics, 20:2711-2718, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2711-2718
    • Ji, L.1    Tan, K.2
  • 16
    • 25444502609 scopus 로고    scopus 로고
    • Page: Parametric analysis of gene set enrichment
    • S. Kim and D. Volsky. Page: Parametric analysis of gene set enrichment. BMC Bioinformatics, 6:144, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 144
    • Kim, S.1    Volsky, D.2
  • 18
    • 34247990255 scopus 로고
    • On the kolmogorov-smirnov test for normality with mean and variance unknown
    • H. Lilliefors. On the kolmogorov-smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62, 1967.
    • (1967) Journal of the American Statistical Association , vol.62
    • Lilliefors, H.1
  • 20
    • 14044259360 scopus 로고    scopus 로고
    • Gene ontology friendly biclustering of expression profiles
    • J. Liu, J. Yang, and W. Wang. Gene ontology friendly biclustering of expression profiles. In Proc. CSB conf., pages 436-447, 2004.
    • (2004) Proc. CSB conf , pp. 436-447
    • Liu, J.1    Yang, J.2    Wang, W.3
  • 22
    • 49049084333 scopus 로고    scopus 로고
    • Co-expressed gene groups analysis (cgga): An automatic tool for the interpretation of microarray experiments
    • R. Martinez, N. Pasquier, C. Pasquier, M. Collard, and L. Lopez-Perez. Co-expressed gene groups analysis (cgga): An automatic tool for the interpretation of microarray experiments. J. of Integrative Bioinformatics, 3(11):1-12, 2006.
    • (2006) J. of Integrative Bioinformatics , vol.3 , Issue.11 , pp. 1-12
    • Martinez, R.1    Pasquier, N.2    Pasquier, C.3    Collard, M.4    Lopez-Perez, L.5
  • 23
    • 0033981095 scopus 로고    scopus 로고
    • Rap, rap, open up! new wrinkles for rapi in yeast
    • R. H. Morse. Rap, rap, open up! new wrinkles for rapi in yeast. Trends Genet, 16:51-53, 2000.
    • (2000) Trends Genet , vol.16 , pp. 51-53
    • Morse, R.H.1
  • 25
    • 21144455401 scopus 로고    scopus 로고
    • Effects of threshold choice on biological conclusions reched during analysis of gene expression by dna microarrays
    • K. Pan, C. Lih, and N. Cohen. Effects of threshold choice on biological conclusions reched during analysis of gene expression by dna microarrays. National Academy of Sciences PNAS, 102:8961-8965, 2005.
    • (2005) National Academy of Sciences PNAS , vol.102 , pp. 8961-8965
    • Pan, K.1    Lih, C.2    Cohen, N.3
  • 27
    • 0033096890 scopus 로고    scopus 로고
    • Efficient mining of association rules using closed itemset lattices
    • N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using closed itemset lattices. Information Systems, 24(1):25-46, 1999.
    • (1999) Information Systems , vol.24 , Issue.1 , pp. 25-46
    • Pasquier, N.1    Bastide, Y.2    Taouil, R.3    Lakhal, L.4
  • 29
    • 25444482341 scopus 로고    scopus 로고
    • Theme discovery from gene lists for identification and viewing of multiple functional groups
    • P. Pehkonen, G. Wong, and P. Toronen. Theme discovery from gene lists for identification and viewing of multiple functional groups. BMC Bioinformatics, 6:162, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 162
    • Pehkonen, P.1    Wong, G.2    Toronen, P.3
  • 30
    • 49049102623 scopus 로고    scopus 로고
    • H. Shatkay, S. Edwards, W. W., and B. M. Genes, themes, microarrays: using information retrieval for large-scale gene analysis. In Proc. ISMB conf., pages 340-347, 2000.
    • H. Shatkay, S. Edwards, W. W., and B. M. Genes, themes, microarrays: using information retrieval for large-scale gene analysis. In Proc. ISMB conf., pages 340-347, 2000.
  • 31
    • 0242456800 scopus 로고    scopus 로고
    • Handling very large numbers of association rules in the analysis of microarray data
    • A. Tuzhilin and G. Adomavicius. Handling very large numbers of association rules in the analysis of microarray data. In Proc. ACM SIGKDD conf., pages 396-404, 2002.
    • (2002) Proc. ACM SIGKDD conf , pp. 396-404
    • Tuzhilin, A.1    Adomavicius, G.2
  • 32
    • 0037167899 scopus 로고    scopus 로고
    • Within the fold: Assesing differential expression measures and reproducibility in microarray assays
    • I. Yang, E. Chen, J. Hasseman, W. Liang, B. Frank, V. Sharov, and J. Quackenbush. Within the fold: assesing differential expression measures and reproducibility in microarray assays. Genome Biology, 3:11, 2002.
    • (2002) Genome Biology , vol.3 , pp. 11
    • Yang, I.1    Chen, E.2    Hasseman, J.3    Liang, W.4    Frank, B.5    Sharov, V.6    Quackenbush, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.