메뉴 건너뛰기




Volumn 57, Issue 1-2 SPEC. ISS., 2004, Pages 115-143

Decision support through subgroup discovery: Three case studies and the lessons learned

Author keywords

Actionability; Data mining; Decision support; Lessons learned; Subgroup discovery

Indexed keywords

CUSTOMER SATISFACTION; DATABASE SYSTEMS; DECISION MAKING; KNOWLEDGE ACQUISITION; KNOWLEDGE BASED SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MARKETING;

EID: 3242791702     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:MACH.0000035474.48771.cd     Document Type: Review
Times cited : (77)

References (30)
  • 6
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-283.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 7
  • 9
    • 3242787854 scopus 로고    scopus 로고
    • Three companions for data mining in first order logic
    • S. Džeroski & N. Lavrač (Eds.). Springer-Verlag
    • De Raedt, L., Blockeel, H., Dehaspe, L., & Laer, W. V. (2001). Three companions for data mining in first order logic. In S. Džeroski & N. Lavrač (Eds.), Relational Data Mining. Springer-Verlag.
    • (2001) Relational Data Mining
    • De Raedt, L.1    Blockeel, H.2    Dehaspe, L.3    Laer, W.V.4
  • 11
    • 1942421135 scopus 로고    scopus 로고
    • The geometry of ROC space: Understanding machine learning metrics through ROC isometrics
    • AAAI Press
    • Flach, P. (2003). The geometry of ROC space: Understanding machine learning metrics through ROC isometrics. In Proc. 20th International Conference on Machine Learning (ICML03) (pp. 194-201). AAAI Press.
    • (2003) Proc. 20th International Conference on Machine Learning (ICML03) , pp. 194-201
    • Flach, P.1
  • 15
    • 0038500689 scopus 로고    scopus 로고
    • Active subgroup mining: A case study in coronary heart disease risk group detection
    • Gamberger, D., Lavrač, N., & Kistačić, G. (2003). Active subgroup mining: A case study in coronary heart disease risk group detection. Artificial Intelligence in Medicine, 28, 27-57.
    • (2003) Artificial Intelligence in Medicine , vol.28 , pp. 27-57
    • Gamberger, D.1    Lavrač, N.2    Kistačić, G.3
  • 16
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.1
  • 17
    • 34548735819 scopus 로고    scopus 로고
    • APROPRI-SD: Adapting association rule learning to subgroup discovery
    • M. Berthold, H. J. Lenz, E. Bradley, R. Kruse, & C. Borgelt (Eds.). Springer-Verlag
    • Kavšek, B., Lavrač, N., & Jovanoski, V. (2003). APROPRI-SD: Adapting association rule learning to subgroup discovery. In M. Berthold, H. J. Lenz, E. Bradley, R. Kruse, & C. Borgelt (Eds.), Advances in intelligent data analysis (pp. 230-241). Springer-Verlag.
    • (2003) Advances in Intelligent Data Analysis , pp. 230-241
    • Kavšek, B.1    Lavrač, N.2    Jovanoski, V.3
  • 18
    • 0002192370 scopus 로고    scopus 로고
    • EXPLORA: A multipattern and multistrategy discovery assistant
    • M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.). Menlo Park, CA: AAAI Press
    • Kloesgen, W. (1996). EXPLORA: A multipattern and multistrategy discovery assistant. In M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances In knowledge discovery and data mining. Menlo Park, CA: AAAI Press.
    • (1996) Advances in Knowledge Discovery and Data Mining
    • Kloesgen, W.1
  • 19
    • 0038433993 scopus 로고    scopus 로고
    • Adapting classification rule induction to subgroup discovery
    • V. Kumar, S. Tsumoto, N. Zhong, P. Yu, & X. Wu (Eds.), IEEE Computer Society
    • Lavrac ̌, N., Flach, P., Kavšek, B., & Todorovski, L. (2002). Adapting classification rule induction to subgroup discovery. In V. Kumar, S. Tsumoto, N. Zhong, P. Yu, & X. Wu (Eds.), Proceedings of the 2002 IEEE International Conference on Data Mining (pp. 266-273). IEEE Computer Society.
    • (2002) Proceedings of the 2002 IEEE International Conference on Data Mining , pp. 266-273
    • Lavrač, N.1    Flach, P.2    Kavšek, B.3    Todorovski, L.4
  • 22
    • 85005299854 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its testing application on three medical domains
    • Morgan Kaufmann
    • Michalski, R., Mozetič, I., Hong, J., & Lavrač, N. (1986). The multi-purpose incremental learning system AQ15 and its testing application on three medical domains. In Proc. 5th National Conference on Artificial Intelligence (pp. 1041-1045). Morgan Kaufmann.
    • (1986) Proc. 5th National Conference on Artificial Intelligence , pp. 1041-1045
    • Michalski, R.1    Mozetič, I.2    Hong, J.3    Lavrač, N.4
  • 26
    • 1442267080 scopus 로고
    • Learning decision lists
    • Rivest, R. L. (1987). Learning decision lists. Machine Learning, 2:3, 229-246.
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.L.1
  • 27
    • 85172416536 scopus 로고
    • On subjective measures of interestingness in knowledge discovery
    • Silberschatz, A., & Tuzhilin, A. (1995). On subjective measures of interestingness in knowledge discovery. In Knowledge Discovery and data mining (pp. 275-281).
    • (1995) Knowledge Discovery and Data Mining , pp. 275-281
    • Silberschatz, A.1    Tuzhilin, A.2
  • 29
    • 0038434018 scopus 로고    scopus 로고
    • Inductive logic programming for knowledge discovery in databases
    • S. Džeroski & N. Lavrač (Eds.). Springer-Verlag
    • Wrobel, S. (2001). Inductive logic programming for knowledge discovery in databases. In S. Džeroski & N. Lavrač (Eds.), Relational data mining. Springer-Verlag.
    • (2001) Relational Data Mining
    • Wrobel, S.1
  • 30
    • 0038434016 scopus 로고
    • The ILP description learning problem: Towards a general model-level definition of data mining in ILP
    • K. Morik & J. Herrmann (Eds.). 44221 Dortmund, Univ. Dortmund
    • Wrobel, S., & Džeroski, S. (1995). The ILP description learning problem: Towards a general model-level definition of data mining in ILP. In K. Morik & J. Herrmann (Eds.), Proc. Fachgruppentreffen Maschinelles Lernen (FGML-95). 44221 Dortmund, Univ. Dortmund.
    • (1995) Proc. Fachgruppentreffen Maschinelles Lernen (FGML-95)
    • Wrobel, S.1    Džeroski, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.