메뉴 건너뛰기




Volumn 6, Issue 2, 2002, Pages 131-152

Adaptive sampling methods for scaling up knowledge discovery algorithms

Author keywords

Adaptive sampling; Concentration bounds; Data mining; Knowledge discovery; Scalability

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; DATA MINING; KNOWLEDGE ENGINEERING;

EID: 0036102015     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1014091514039     Document Type: Article
Times cited : (78)

References (21)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E. and Kohavi, R. 1998. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-139.
    • (1998) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 84949206728 scopus 로고    scopus 로고
    • Practical algorithms for on-line selection
    • Proceedings of the First International Conference on Discovery Science (DS'98)
    • Domingo, C., Gavaldà, R., and Watanabe, R. 1998. Practical algorithms for on-line selection. In Proceedings of the First International Conference on Discovery Science (DS'98), Lecture Notes in Artificial Intelligence, vol. 1532. (pp. 150-161).
    • (1998) Lecture Notes in Artificial Intelligence , vol.1532 , pp. 150-161
    • Domingo, C.1    Gavaldà, R.2    Watanabe, R.3
  • 3
    • 0141436048 scopus 로고    scopus 로고
    • On-line sampling methods for discovering association rules
    • Dept. of Math and Computing Science, Tokyo Institute of Technology
    • Domingo, C., Gavaldà, R., and Watanabe, O. 1999. On-line sampling methods for discovering association rules. Dept. of Math and Computing Science, Tokyo Institute of Technology, Tokyo Tech Rep. C-126.
    • (1999) Tokyo Tech Rep. , vol.C-126
    • Domingo, C.1    Gavaldà, R.2    Watanabe, O.3
  • 4
    • 0141771220 scopus 로고    scopus 로고
    • MadaBoost: A modification of AdaBoost for the filtering framework
    • Dept. of Math and Computing Science, Tokyo Institute of Technology, Tokyo. Also submitted for publication
    • Domingo, C. and Watanabe, O. 1999. MadaBoost: A modification of AdaBoost for the filtering framework. Dept. of Math and Computing Science, Tokyo Institute of Technology, Tokyo, Tech Rep. C-138. Available at www.is.titech.ac.jp/research/research-report/C/index.html. Also submitted for publication.
    • (1999) Tech Rep. , vol.C-138
    • Domingo, C.1    Watanabe, O.2
  • 6
    • 0141659265 scopus 로고    scopus 로고
    • Experimental evaluation of an adaptive boosting by filtering algorithm
    • Submitted for publication. Dept. of Math and Comp. Science, Tokyo Insitute of Technology, Tokyo
    • Domingo, C. and Watanabe, O. 2000b. Experimental evaluation of an adaptive boosting by filtering algorithm. Submitted for publication. Dept. of Math and Comp. Science, Tokyo Insitute of Technology, Tokyo, Tech Rep. C-139. Available at www.is.titech.ac.jp/research/research-report/C/index.html.
    • (2000) Tech Rep. , vol.C-139
    • Domingo, C.1    Watanabe, O.2
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y. and Schapire, R.E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Keogh, E., Blake, C. and Merz, C.J. 1998. UCI repository of machine learning databases. Available at http://www.ics.uci.edu/mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science.
    • (1998) UCI Repository of Machine Learning Databases
    • Keogh, E.1    Blake, C.2    Merz, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.