메뉴 건너뛰기




Volumn 72, Issue , 2007, Pages 233-242

Synchronization of the Drosophila circadian clock by temperature cycles

Author keywords

[No Author keywords available]

Indexed keywords

CIRCADIAN RHYTHM; DROSOPHILA; INSECT GENETICS; MOLECULAR CLOCK; MUTANT; NONHUMAN; SIGNAL TRANSDUCTION; TEMPERATURE; TRANSCRIPTION REGULATION; ANIMAL; FEMALE; GENE; GENETICS; MALE; MUTATION; NERVE CELL; PHOTOPERIODICITY; PHYSIOLOGY; REVIEW; TRANSGENIC ANIMAL;

EID: 48249114716     PISSN: 00917451     EISSN: None     Source Type: Book Series    
DOI: 10.1101/sqb.2007.72.046     Document Type: Conference Paper
Times cited : (45)

References (63)
  • 2
    • 34247553947 scopus 로고    scopus 로고
    • Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS
    • Boothroyd C.E., Wijnen H., Naef F., Saez L., and Young M.W. 2007. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 3: e54.
    • (2007) Genet , vol.3
    • Boothroyd, C.E.1    Wijnen, H.2    Naef, F.3    Saez, L.4    Young, M.W.5
  • 3
    • 0037125939 scopus 로고    scopus 로고
    • Rhythms of mammalian body temperature can sustain peripheral circadian clocks
    • Brown S.A., Zumbrunn G., Fleury-Olela F., Preitner N., and Schibler U. 2002. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12: 1574.
    • (2002) Curr. Biol , vol.12 , pp. 1574
    • Brown, S.A.1    Zumbrunn, G.2    Fleury-Olela, F.3    Preitner, N.4    Schibler, U.5
  • 4
    • 35148877259 scopus 로고    scopus 로고
    • Interactions between circadian neurons control temperature synchronization of Drosophila behavior
    • Busza A., Murad A., and Emery P. 2007. Interactions between circadian neurons control temperature synchronization of Drosophila behavior. J. Neurosci. 27: 10722.
    • (2007) J. Neurosci , vol.27 , pp. 10722
    • Busza, A.1    Murad, A.2    Emery, P.3
  • 5
    • 2642584009 scopus 로고    scopus 로고
    • Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception
    • Busza A., Emery-Le M., Rosbash M., and Emery P. 2004. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304: 1503.
    • (2004) Science , vol.304 , pp. 1503
    • Busza, A.1    Emery-Le, M.2    Rosbash, M.3    Emery, P.4
  • 7
    • 1242319314 scopus 로고    scopus 로고
    • Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C
    • Collins B.H., Rosato E., and Kyriacou C.P. 2004. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proc. Natl. Acad. Sci. 101: 1945.
    • (2004) Proc. Natl. Acad. Sci , vol.101 , pp. 1945
    • Collins, B.H.1    Rosato, E.2    Kyriacou, C.P.3
  • 8
    • 35048822943 scopus 로고    scopus 로고
    • Rhythm defects caused by newly engineered null mutations in Drosophila's cryptochrome gene
    • Dolezelova E., Dolezel D., and Hall J.C. 2007. Rhythm defects caused by newly engineered null mutations in Drosophila's cryptochrome gene. Genetics 177: 329.
    • (2007) Genetics , vol.177 , pp. 329
    • Dolezelova, E.1    Dolezel, D.2    Hall, J.C.3
  • 10
    • 0028158263 scopus 로고
    • Phase shifting of the circadian clock by induction of the Drosophila Period protein
    • Edery I., Rutila J.E., and Rosbash M. 1994. Phase shifting of the circadian clock by induction of the Drosophila Period protein. Science 263: 237.
    • (1994) Science , vol.263 , pp. 237
    • Edery, I.1    Rutila, J.E.2    Rosbash, M.3
  • 12
    • 0032567038 scopus 로고    scopus 로고
    • CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity
    • Emery P., So W.V., Kaneko M., Hall J.C., and Rosbash M. 1998. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95: 669.
    • (1998) Cell , vol.95 , pp. 669
    • Emery, P.1    So, W.V.2    Kaneko, M.3    Hall, J.C.4    Rosbash, M.5
  • 15
    • 23244444804 scopus 로고    scopus 로고
    • Temperature synchronization of the Drosophila circadian clock
    • Glaser F.T. and Stanewsky R. 2005. Temperature synchronization of the Drosophila circadian clock. Curr. Biol. 15: 1352.
    • (2005) Curr. Biol , vol.15 , pp. 1352
    • Glaser, F.T.1    Stanewsky, R.2
  • 16
    • 7244252844 scopus 로고    scopus 로고
    • Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain
    • Grima B., Chelot E., Xia R., and Rouyer F. 2004. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431: 869.
    • (2004) Nature , vol.431 , pp. 869
    • Grima, B.1    Chelot, E.2    Xia, R.3    Rouyer, F.4
  • 17
    • 0037686260 scopus 로고    scopus 로고
    • Genetics and molecular biology of rhythms in Drosophila and other insects
    • Hall J.C. 2003. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48: 1.
    • (2003) Adv. Genet , vol.48 , pp. 1
    • Hall, J.C.1
  • 18
    • 14744303401 scopus 로고    scopus 로고
    • Neurobiology of the fruit fly's circadian clock
    • Helfrich-Förster C. 2005. Neurobiology of the fruit fly's circadian clock. Genes Brain Behav. 4: 65.
    • (2005) Genes Brain Behav , vol.4 , pp. 65
    • Helfrich-Förster, C.1
  • 19
    • 0035025621 scopus 로고    scopus 로고
    • The circadian clock of fruit flies is blind after elimination of all known photoreceptors
    • Helfrich-Förster C., Winter C., Hofbauer A., Hall J.C., and Stanewsky R. 2001. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30: 249.
    • (2001) Neuron , vol.30 , pp. 249
    • Helfrich-Förster, C.1    Winter, C.2    Hofbauer, A.3    Hall, J.C.4    Stanewsky, R.5
  • 20
    • 0028933507 scopus 로고
    • PER protein interactions and temperature compensation of a circadian clock in Drosophila
    • Huang Z.J., Curtin K.D., and Rosbash M. 1995. PER protein interactions and temperature compensation of a circadian clock in Drosophila. Science 267: 1169.
    • (1995) Science , vol.267 , pp. 1169
    • Huang, Z.J.1    Curtin, K.D.2    Rosbash, M.3
  • 21
    • 34547614440 scopus 로고    scopus 로고
    • The PAS/LOV protein VIVID controls temperature compensation of circadian clock phase and development in Neurospora crassa
    • Hunt S.M., Elvin M., Crosthwaite S.K., and Heintzen C. 2007. The PAS/LOV protein VIVID controls temperature compensation of circadian clock phase and development in Neurospora crassa. Genes Dev. 21: 1964.
    • (2007) Genes Dev , vol.21 , pp. 1964
    • Hunt, S.M.1    Elvin, M.2    Crosthwaite, S.K.3    Heintzen, C.4
  • 22
    • 0034988751 scopus 로고    scopus 로고
    • Circadian photoreception in Drosophila: Functions of cryptochrome in peripheral and central clocks
    • Ivanchenko M., Stanewsky R., and Giebultowicz J.M. 2001. Circadian photoreception in Drosophila: Functions of cryptochrome in peripheral and central clocks. J. Biol. Rhythms 16: 205.
    • (2001) J. Biol. Rhythms , vol.16 , pp. 205
    • Ivanchenko, M.1    Stanewsky, R.2    Giebultowicz, J.M.3
  • 23
    • 0034686552 scopus 로고    scopus 로고
    • Neuroanatomy of cells expressing clock genes in Drosophila: Transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections
    • Kaneko M. and Hall J.C. 2000. Neuroanatomy of cells expressing clock genes in Drosophila: Transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol. 422: 66.
    • (2000) J. Comp. Neurol , vol.422 , pp. 66
    • Kaneko, M.1    Hall, J.C.2
  • 24
    • 34250340567 scopus 로고    scopus 로고
    • PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila
    • Kaushik R., Nawathean P., Busza A., Murad A., Emery P., and Rosbash M. 2007. PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. PLoS Biol. 5: e146.
    • (2007) PLoS Biol , vol.5
    • Kaushik, R.1    Nawathean, P.2    Busza, A.3    Murad, A.4    Emery, P.5    Rosbash, M.6
  • 25
    • 1242291763 scopus 로고    scopus 로고
    • Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila
    • Klarsfeld A., Malpel S., Michard-Vanhee C., Picot M., Chelot E., and Rouyer F. 2004. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J. Neurosci. 24: 1468.
    • (2004) J. Neurosci , vol.24 , pp. 1468
    • Klarsfeld, A.1    Malpel, S.2    Michard-Vanhee, C.3    Picot, M.4    Chelot, E.5    Rouyer, F.6
  • 26
    • 0024724756 scopus 로고
    • Reciprocal behaviour associated with altered homeostasis and photosen-sitivity of Drosophila clock mutants
    • Konopka R.J., Pittendrigh C., and Orr D. 1989. Reciprocal behaviour associated with altered homeostasis and photosen-sitivity of Drosophila clock mutants. J. Neurogenet. 6: 1.
    • (1989) J. Neurogenet , vol.6 , pp. 1
    • Konopka, R.J.1    Pittendrigh, C.2    Orr, D.3
  • 27
    • 33846944676 scopus 로고    scopus 로고
    • System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
    • Kornmann B., Schaad O., Bujard H., Takahashi J.S., and Schibler U. 2007. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5: e34.
    • (2007) PLoS Biol , vol.5
    • Kornmann, B.1    Schaad, O.2    Bujard, H.3    Takahashi, J.S.4    Schibler, U.5
  • 29
    • 0030804324 scopus 로고    scopus 로고
    • Temperature compensation of circadian rhythms: Control of the period in a model for circadian oscillations of the PER protein in Drosophila
    • Leloup J.C. and Goldbeter A. 1997. Temperature compensation of circadian rhythms: Control of the period in a model for circadian oscillations of the PER protein in Drosophila. Chronobiol. Int. 14: 511.
    • (1997) Chronobiol. Int , vol.14 , pp. 511
    • Leloup, J.C.1    Goldbeter, A.2
  • 30
    • 2642573572 scopus 로고    scopus 로고
    • Advanced analysis of a cryptochrome mutation's effects on the robustness and phase of molecular cycles in isolated peripheral tissues of Drosophila
    • Levine J.D., Funes P., Dowse H.B., and Hall J.C. 2002a. Advanced analysis of a cryptochrome mutation's effects on the robustness and phase of molecular cycles in isolated peripheral tissues of Drosophila. BMC Neurosci. 3: 5.
    • (2002) BMC Neurosci , vol.3 , pp. 5
    • Levine, J.D.1    Funes, P.2    Dowse, H.B.3    Hall, J.C.4
  • 31
    • 0037032832 scopus 로고    scopus 로고
    • Resetting the circadian clock by social experience in Drosophila melanogaster
    • ---. 2002b. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298: 2010.
    • (2002) Science , vol.298 , pp. 2010
    • Levine, J.D.1    Funes, P.2    Dowse, H.B.3    Hall, J.C.4
  • 32
    • 1842505320 scopus 로고    scopus 로고
    • Splicing of the period gene 3′-terminal intron is regulated by light, circadian clock factors, and phospholipase C
    • Majercak J., Chen W.F., and Edery I. 2004. Splicing of the period gene 3′-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol. Cell. Biol. 24: 3359.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 3359
    • Majercak, J.1    Chen, W.F.2    Edery, I.3
  • 33
    • 0033199242 scopus 로고    scopus 로고
    • How a circadian clock adapts to seasonal decreases in temperature and day length
    • Majercak J., Sidote D., Hardin P.E., and Edery I. 1999. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24: 219.
    • (1999) Neuron , vol.24 , pp. 219
    • Majercak, J.1    Sidote, D.2    Hardin, P.E.3    Edery, I.4
  • 34
    • 0030480102 scopus 로고    scopus 로고
    • S flies: Evidence for light-mediated delay of the negative feedback loop in Drosophila
    • S flies: Evidence for light-mediated delay of the negative feedback loop in Drosophila. EMBO J. 15: 6877.
    • (1996) EMBO J , vol.15 , pp. 6877
    • Marrus, S.B.1    Zeng, H.2    Rosbash, M.3
  • 35
    • 0032125873 scopus 로고    scopus 로고
    • Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster
    • Matsumoto A., Matsumoto N., Harui Y., Sakamoto M., and Tomioka K. 1998. Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. J. Insect Physiol. 44: 587.
    • (1998) J. Insect Physiol , vol.44 , pp. 587
    • Matsumoto, A.1    Matsumoto, N.2    Harui, Y.3    Sakamoto, M.4    Tomioka, K.5
  • 36
    • 0346097012 scopus 로고    scopus 로고
    • Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila
    • Mealey-Ferrara M.L., Montalvo A.G., and Hall J.C. 2003. Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila. J. Neurogenet. 17: 171.
    • (2003) J. Neurogenet , vol.17 , pp. 171
    • Mealey-Ferrara, M.L.1    Montalvo, A.G.2    Hall, J.C.3
  • 37
    • 0033542410 scopus 로고    scopus 로고
    • Assignment of circadian function for the Neurospora clock gene frequency
    • Merrow M., Brunner M., and Roenneberg T. 1999. Assignment of circadian function for the Neurospora clock gene frequency. Nature 399: 584.
    • (1999) Nature , vol.399 , pp. 584
    • Merrow, M.1    Brunner, M.2    Roenneberg, T.3
  • 38
    • 34147172166 scopus 로고    scopus 로고
    • Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms
    • Miyasako Y., Umezaki Y., and Tomioka K. 2007. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms 22: 115.
    • (2007) J. Biol. Rhythms , vol.22 , pp. 115
    • Miyasako, Y.1    Umezaki, Y.2    Tomioka, K.3
  • 39
    • 0032535245 scopus 로고    scopus 로고
    • Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators
    • Morimoto R.I. 1998. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12: 3788.
    • (1998) Genes Dev , vol.12 , pp. 3788
    • Morimoto, R.I.1
  • 40
    • 0037047429 scopus 로고    scopus 로고
    • Dynamic remodeling of transcription complexes by molecular chaperones
    • ---. 2002. Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110: 281.
    • (2002) Cell , vol.110 , pp. 281
    • Morimoto, R.I.1
  • 41
    • 0029926102 scopus 로고    scopus 로고
    • Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants
    • Pearn M.T., Randall L.L., Shortridge R.D., Burg M.G., and Pak W.L. 1996. Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J. Biol. Chem. 271: 4937.
    • (1996) J. Biol. Chem , vol.271 , pp. 4937
    • Pearn, M.T.1    Randall, L.L.2    Shortridge, R.D.3    Burg, M.G.4    Pak, W.L.5
  • 42
    • 0030656411 scopus 로고    scopus 로고
    • Independent photoreceptive circadian clocks throughout Drosophila
    • Plautz J.D., Kaneko M., Hall J.C., and Kay S.A. 1997. Independent photoreceptive circadian clocks throughout Drosophila. Science 278: 1632.
    • (1997) Science , vol.278 , pp. 1632
    • Plautz, J.D.1    Kaneko, M.2    Hall, J.C.3    Kay, S.A.4
  • 44
    • 12144252111 scopus 로고    scopus 로고
    • Circadian rhythm generation and entrainment in astrocytes
    • Prolo L.M., Takahashi J.S., and Herzog E.D. 2005. Circadian rhythm generation and entrainment in astrocytes. J. Neurosci. 25: 404.
    • (2005) J. Neurosci , vol.25 , pp. 404
    • Prolo, L.M.1    Takahashi, J.S.2    Herzog, E.D.3
  • 45
    • 0031266567 scopus 로고    scopus 로고
    • Twilight times: Light and the circadian system
    • Roenneberg T. and Foster R.G. 1997. Twilight times: Light and the circadian system. Photochem. Photobiol. 66: 549.
    • (1997) Photochem. Photobiol , vol.66 , pp. 549
    • Roenneberg, T.1    Foster, R.G.2
  • 46
    • 19644376568 scopus 로고    scopus 로고
    • Demasking biological oscillators: Properties and principles of entrainment exemplified by the Neurospora circadian clock
    • Roenneberg T., Dragovic Z., and Merrow M. 2005. Demasking biological oscillators: Properties and principles of entrainment exemplified by the Neurospora circadian clock. Proc. Natl. Acad. Sci. 102: 7742.
    • (2005) Proc. Natl. Acad. Sci , vol.102 , pp. 7742
    • Roenneberg, T.1    Dragovic, Z.2    Merrow, M.3
  • 47
    • 29144492754 scopus 로고    scopus 로고
    • The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock
    • Ruoff P., Loros J.J., and Dunlap J.C. 2005. The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proc. Natl. Acad. Sci. . 102: 17681.
    • (2005) Proc. Natl. Acad. Sci , vol.102 , pp. 17681
    • Ruoff, P.1    Loros, J.J.2    Dunlap, J.C.3
  • 49
    • 0029941307 scopus 로고    scopus 로고
    • Behavioral genetics of thermosensation and hygrosensation in Drosophila
    • Sayeed O. and Benzer S. 1996. Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Natl. Acad. Sci. 93: 6079.
    • (1996) Proc. Natl. Acad. Sci , vol.93 , pp. 6079
    • Sayeed, O.1    Benzer, S.2
  • 50
    • 0031948386 scopus 로고    scopus 로고
    • Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM
    • Sidote D., Majercak J., Parikh V., and Edery I. 1998. Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM. Mol. Cell. Biol. 18: 2004.
    • (1998) Mol. Cell. Biol , vol.18
    • Sidote, D.1    Majercak, J.2    Parikh, V.3    Edery, I.4
  • 51
    • 0036673392 scopus 로고    scopus 로고
    • Mapping of elements involved in regulating normal temporal period and timeless RNA expression patterns in Drosophila melanogaster
    • Stanewsky R., Lynch K.S., Brandes C., and Hall J.C. 2002. Mapping of elements involved in regulating normal temporal period and timeless RNA expression patterns in Drosophila melanogaster. J. Biol. Rhythms 17: 293.
    • (2002) J. Biol. Rhythms , vol.17 , pp. 293
    • Stanewsky, R.1    Lynch, K.S.2    Brandes, C.3    Hall, J.C.4
  • 53
    • 7244242193 scopus 로고    scopus 로고
    • Coupled oscillators control morning and evening locomotor behaviour of Drosophila
    • Stoleru D., Peng Y., Agosto J., and Rosbash M. 2004. Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431: 862.
    • (2004) Nature , vol.431 , pp. 862
    • Stoleru, D.1    Peng, Y.2    Agosto, J.3    Rosbash, M.4
  • 54
    • 27744493091 scopus 로고    scopus 로고
    • A resetting signal between Drosophila pacemakers synchronizes morning and evening activity
    • Stoleru D., Peng Y., Nawathean P., and Rosbash M. 2005. A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438: 238.
    • (2005) Nature , vol.438 , pp. 238
    • Stoleru, D.1    Peng, Y.2    Nawathean, P.3    Rosbash, M.4
  • 55
    • 33845999933 scopus 로고    scopus 로고
    • Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons
    • Veleri S., Rieger D., Helfrich-Förster C., and Stanewsky R. 2007. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J. Biol. Rhythms 22: 29.
    • (2007) J. Biol. Rhythms , vol.22 , pp. 29
    • Veleri, S.1    Rieger, D.2    Helfrich-Förster, C.3    Stanewsky, R.4
  • 56
    • 0142052954 scopus 로고    scopus 로고
    • A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain
    • Veleri S., Brandes C., Helfrich-Förster C., Hall J.C., and Stanewsky R. 2003. A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr. Biol. 13: 1758.
    • (2003) Curr. Biol , vol.13 , pp. 1758
    • Veleri, S.1    Brandes, C.2    Helfrich-Förster, C.3    Hall, J.C.4    Stanewsky, R.5
  • 57
    • 0027564206 scopus 로고
    • Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both
    • Wheeler D.A., Hamblen-Coyle M.J., Dushay M.S., and Hall J.C. 1993. Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both. J. Biol. Rhythms 8: 67.
    • (1993) J. Biol. Rhythms , vol.8 , pp. 67
    • Wheeler, D.A.1    Hamblen-Coyle, M.J.2    Dushay, M.S.3    Hall, J.C.4
  • 59
    • 34147103275 scopus 로고    scopus 로고
    • Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light
    • Yoshii T., Fujii K., and Tomioka K. 2007. Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light. J. Biol. Rhythms 22: 103.
    • (2007) J. Biol. Rhythms , vol.22 , pp. 103
    • Yoshii, T.1    Fujii, K.2    Tomioka, K.3
  • 60
    • 0036703149 scopus 로고    scopus 로고
    • A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster
    • Yoshii T., Sakamoto M., and Tomioka K. 2002. A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster. Zoolog. Sci. 19: 841.
    • (2002) Zoolog. Sci , vol.19 , pp. 841
    • Yoshii, T.1    Sakamoto, M.2    Tomioka, K.3
  • 61
    • 25844484674 scopus 로고    scopus 로고
    • Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity
    • Yoshii T., Heshiki Y., Ibuki-Ishibashi T., Matsumoto A., Tanimura T., and Tomioka K. 2005. Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity. Eur. J. Neurosci. 22: 1176.
    • (2005) Eur. J. Neurosci , vol.22 , pp. 1176
    • Yoshii, T.1    Heshiki, Y.2    Ibuki-Ishibashi, T.3    Matsumoto, A.4    Tanimura, T.5    Tomioka, K.6
  • 62
    • 0034997664 scopus 로고    scopus 로고
    • Two thermosensors in Drosophila have different behavioral functions
    • Zars T. 2001. Two thermosensors in Drosophila have different behavioral functions. J. Comp. Physiol. A 187: 235
    • (2001) J. Comp. Physiol. A , vol.187 , pp. 235
    • Zars, T.1
  • 63
    • 0025468873 scopus 로고
    • Circadian fluctuations of Period protein immunoreactivity in the CNS and the visual system of Drosophila
    • Zerr D.M., Hall J.C., Rosbash M., and Siwicki K.K. 1990. Circadian fluctuations of Period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10: 2749.
    • (1990) J Neurosci , vol.10 , pp. 2749
    • Zerr, D.M.1    Hall, J.C.2    Rosbash, M.3    Siwicki, K.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.