메뉴 건너뛰기




Volumn , Issue , 2007, Pages 67-72

Sparseness achievement in hidden markov models

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL GRAMMARS; CONFORMAL MAPPING; HIDDEN MARKOV MODELS; IMAGE ANALYSIS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MARKOV PROCESSES; MATHEMATICAL MODELS; MODAL ANALYSIS; NEURAL NETWORKS; OBJECT RECOGNITION; PARAMETER ESTIMATION; SPEECH RECOGNITION;

EID: 48149105281     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICIAP.2007.4362759     Document Type: Conference Paper
Times cited : (10)

References (28)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike. A new look at the statistical model identification. IEEE Trans. on Automatic Control, AC-19:716-723, 1974.
    • (1974) IEEE Trans. on Automatic Control , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 3
  • 4
    • 0003271479 scopus 로고
    • Continuous speech word recognition via centi-second acoustic states
    • R. Bakis. Continuous speech word recognition via centi-second acoustic states. In Proc. of ASA Meeting, 1976.
    • (1976) Proc. of ASA Meeting
    • Bakis, R.1
  • 7
    • 0037410744 scopus 로고    scopus 로고
    • A sequential pruning strategy for the selection of the number of states in Hidden Markov Models
    • M. Bicego, V. Murino, and M. Figueiredo. A sequential pruning strategy for the selection of the number of states in Hidden Markov Models. Pattern Recognition Letters, 24(9-10):1395-1407, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1395-1407
    • Bicego, M.1    Murino, V.2    Figueiredo, M.3
  • 8
    • 0000148207 scopus 로고    scopus 로고
    • An entropie estimator for structure discovery
    • M. Kearns, S. Solla, and D. Cohn, editors, MIT Press
    • M. Brand. An entropie estimator for structure discovery. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural Information Processing Systems, volume 11. MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Brand, M.1
  • 9
    • 0000675167 scopus 로고    scopus 로고
    • Structure learning in conditional probability models via an entropie prior and parameter extinction
    • M. Brand. Structure learning in conditional probability models via an entropie prior and parameter extinction. Neural Computation, 11:1144-1182, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1144-1182
    • Brand, M.1
  • 15
    • 0029887381 scopus 로고    scopus 로고
    • Hidden Markov Model for sequence analysis: Extension and analysis of the basic method
    • R. Hughey and A. Krogh. Hidden Markov Model for sequence analysis: extension and analysis of the basic method. Comp. Appl. in the Biosciences, 12:95-107, 1996.
    • (1996) Comp. Appl. in the Biosciences , vol.12 , pp. 95-107
    • Hughey, R.1    Krogh, A.2
  • 17
    • 0001903866 scopus 로고    scopus 로고
    • Action reaction learning: Automatic visual analysis and synthesis of interactive behavior
    • T. Jebara and A. Pentland. Action reaction learning: Automatic visual analysis and synthesis of interactive behavior. In Proc. Int Conf. Computer Vision Systems, 1999.
    • (1999) Proc. Int Conf. Computer Vision Systems
    • Jebara, T.1    Pentland, A.2
  • 18
    • 0016939124 scopus 로고
    • Continuous speech recognition by statistical methods
    • F. Jelinek. Continuous speech recognition by statistical methods. Proc. of IEEE, 64:532-536, 1976.
    • (1976) Proc. of IEEE , vol.64 , pp. 532-536
    • Jelinek, F.1
  • 19
    • 0022691022 scopus 로고
    • Maximum likelihood estimation for multivariate mixture observations of Markov Chain
    • B. Juang, S. Levinson, and M. Sondhi. Maximum likelihood estimation for multivariate mixture observations of Markov Chain. IEEE Trans. Information Theory, 32(2):307-309, 1986.
    • (1986) IEEE Trans. Information Theory , vol.32 , Issue.2 , pp. 307-309
    • Juang, B.1    Levinson, S.2    Sondhi, M.3
  • 20
    • 0020180460 scopus 로고
    • Maximum lilelihood estimation for multivariate observations of Markov sources
    • L. Liporace. Maximum lilelihood estimation for multivariate observations of Markov sources. IEEE Trans. on Information Theory, IT-28(5):729-734, 1982.
    • (1982) IEEE Trans. on Information Theory , vol.IT-28 , Issue.5 , pp. 729-734
    • Liporace, L.1
  • 21
    • 0024610919 scopus 로고
    • A tutorial on Hidden Markov Models and selected applications in speech recognition
    • L. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. of IEEE, 77(2):257-286, 1989.
    • (1989) Proc. of IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 22
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • J. Rissanen. Stochastic complexity and modeling. The Annals of Statistics, 14:1080-1100, 1986.
    • (1986) The Annals of Statistics , vol.14 , pp. 1080-1100
    • Rissanen, J.1
  • 23
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • 461-4-64
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-4-64, 1978.
    • (1978) The Annals of Statistics , vol.6 , Issue.2
    • Schwarz, G.1
  • 26
    • 0002297358 scopus 로고
    • Hidden Markov Model induction by Bayesian model merging
    • S. Hanson, J. Cowan, and C. Giles, editors, Morgan Kaufmann, San Mateo, CA
    • A. Stoicke and S. Omohundro. Hidden Markov Model induction by Bayesian model merging. In S. Hanson, J. Cowan, and C. Giles, editors, Advances in Neural Information Processing Systems, volume 5, pages 11-18. Morgan Kaufmann, San Mateo, CA, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 11-18
    • Stoicke, A.1    Omohundro, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.