메뉴 건너뛰기




Volumn 24, Issue 9-10, 2003, Pages 1395-1407

A sequential pruning strategy for the selection of the number of states in hidden Markov models

Author keywords

Bayesian inference criterion; Hidden markov models; Minimum description length; Model selection; State pruning

Indexed keywords

COMPUTATIONAL METHODS; DATA REDUCTION; MATHEMATICAL MODELS; SENSITIVITY ANALYSIS;

EID: 0037410744     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(02)00380-X     Document Type: Article
Times cited : (44)

References (29)
  • 2
    • 0001862769 scopus 로고
    • An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes
    • Baum, L. (1970). An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequality 3, 1-8.
    • (1970) Inequality , vol.3 , pp. 1-8
    • Baum, L.1
  • 3
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L., Petrie, T., Soules, G., Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals Math. Statist. 41(1), 164-171.
    • (1970) Annals Math. Statist. , vol.41 , Issue.1 , pp. 164-171
    • Baum, L.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 5
    • 84958677243 scopus 로고    scopus 로고
    • Designing the minimal structure of hidden Markov models by bisimulation
    • M. Figueiredo, J. Zerubia, & A. Jain (Eds.), : Springer
    • Bicego, M., Dovier, A., Murino, V. (2001). Designing the minimal structure of hidden Markov models by bisimulation. In M. Figueiredo, J. Zerubia, A. Jain (Eds.), Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer 75-90.
    • (2001) Energy Minimization Methods in Computer Vision and Pattern Recognition , pp. 75-90
    • Bicego, M.1    Dovier, A.2    Murino, V.3
  • 7
    • 0000148207 scopus 로고    scopus 로고
    • An entropic estimator for structure discovery
    • M. Kearns, S. Solla, D. Cohn (Eds.), MIT Press Cambridge, MA
    • Brand, M. (1999). An entropic estimator for structure discovery. In M. Kearns, S. Solla, D. Cohn (Eds.), Advances in Neural Information Processing Systems, vol. 11. MIT Press Cambridge, MA
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Brand, M.1
  • 9
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A., Laird, N., Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B 39, 1-38.
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 11
    • 0342588078 scopus 로고    scopus 로고
    • Recognition of JPEG compressed face images based on statistical methods
    • Eickeler, S., Müller, S., Rigoll, G. (2000). Recognition of JPEG compressed face images based on statistical methods. Image Vision Comput., 18 279-287.
    • (2000) Image Vision Comput. , vol.18 , pp. 279-287
    • Eickeler, S.1    Müller, S.2    Rigoll, G.3
  • 13
    • 0015600423 scopus 로고
    • The Viterbi algorithm
    • Forney, G. (1973). The Viterbi algorithm. Proc. IEEE 61, 268-278.
    • (1973) Proc. IEEE , vol.61 , pp. 268-278
    • Forney, G.1
  • 15
    • 0029887381 scopus 로고    scopus 로고
    • Hidden Markov Model for sequence analysis: Extension and analysis of the basic method
    • Hughey, R., Krogh, A. (1996). Hidden Markov Model for sequence analysis: Extension and analysis of the basic method. Comput. Appl. Biosci. 12, 95-107.
    • (1996) Comput. Appl. Biosci. , vol.12 , pp. 95-107
    • Hughey, R.1    Krogh, A.2
  • 16
    • 0001903866 scopus 로고    scopus 로고
    • Action reaction learning: Automatic visual analysis and synthesis of interactive behavior
    • Jebara, T., Pentland, A., 1999. Action reaction learning: Automatic visual analysis and synthesis of interactive behavior. In: Proc. Internat. Conf. on Comput. Vision Systems.
    • (1999) Proc. Internat. Conf. on Comput. Vision Systems
    • Jebara, T.1    Pentland, A.2
  • 17
    • 0022691022 scopus 로고
    • Maximum likelihood estimation for multivariate mixture observations of Markov chain
    • Juang, B., Levinson, S., Sondhi, M. (1986). Maximum likelihood estimation for multivariate mixture observations of Markov chain. IEEE Trans. Inform. Theory 32(2), 307-309.
    • (1986) IEEE Trans. Inform. Theory , vol.32 , Issue.2 , pp. 307-309
    • Juang, B.1    Levinson, S.2    Sondhi, M.3
  • 21
    • 0011224170 scopus 로고    scopus 로고
    • Unsupervised learning using MML in machine learning
    • Morgan Kaufmann Publishers
    • Oliver, J., Baxter, R., Wallace, C. (1996). Unsupervised learning using MML in machine learning. Proc. of 13th Internat. Conf. (ICML 96) Morgan Kaufmann Publishers, pp. 364-372.
    • (1996) Proc. of 13th Internat. Conf. (ICML 96) , pp. 364-372
    • Oliver, J.1    Baxter, R.2    Wallace, C.3
  • 22
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proc. of IEEE, 77(2), 257-286.
    • (1989) Proc. of IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 23
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • Raftery, A. (1995). Bayesian model selection in social research. Sociol. Methodol., 111-196.
    • (1995) Sociol. Methodol. , pp. 111-196
    • Raftery, A.1
  • 24
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen, J. (1986). Stochastic complexity and modeling. The Annals Statist., 14.
    • (1986) The Annals Statist. , pp. 14
    • Rissanen, J.1
  • 25
    • 0004180250 scopus 로고
    • Technical report, Ph.D. thesis, Engineering Department,Cambridge University
    • Samaria, F., 1994. Face recognition using hidden markov models. Technical report, Ph.D. thesis, Engineering Department, Cambridge University.
    • (1994) Face Recognition Using Hidden Markov models
    • Samaria, F.1
  • 26
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6(2), 461-464.
    • (1978) Ann. Statist. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 27
    • 0002297358 scopus 로고
    • Hidden Markov model induction by Bayesian model merging
    • S. Hanson, J. Cowan, & C. Giles (Eds.), San Mateo, CA: Morgan Kaufmann
    • Stolcke, A., & Omohundro, S. (1993). Hidden Markov model induction by Bayesian model merging. In S. Hanson, J. Cowan, & C. Giles (Eds.), Advances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, CA, pp. 11-18.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 11-18
    • Stolcke, A.1    Omohundro, S.2
  • 28
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. B 36, 111-147.
    • (1974) J. Roy. Statist. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 29
    • 0242428970 scopus 로고    scopus 로고
    • Zimmermann, M., Bunke, H., 2001. Hidden Markov model length optimization for handwriting recognition systems. TR IAM-01-003 University of Bern.
    • (2001)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.