메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1284-1289

Determining posterior probabilities on the basis of cascaded classifiers as used in pedestrian detection systems

Author keywords

[No Author keywords available]

Indexed keywords

INTELLIGENT VEHICLE HIGHWAY SYSTEMS; PEDESTRIAN SAFETY;

EID: 47849096372     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ivs.2007.4290295     Document Type: Conference Paper
Times cited : (11)

References (16)
  • 5
    • 0036475447 scopus 로고    scopus 로고
    • A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking
    • February
    • S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking," IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, February 2002.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 6
    • 0003665481 scopus 로고    scopus 로고
    • Sequential Monte Carlo Methods in Practice
    • A. Doucet, N. Freitas, and N. Gordon, Eds, 175 Fifth Avenue, New York, NY 10010, USA: Springer-Verlag
    • A. Doucet, N. Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice, ser. Statistics for Engineering and Information Science. LLC, 175 Fifth Avenue, New York, NY 10010, USA: Springer-Verlag, 2001.
    • (2001) ser. Statistics for Engineering and Information Science , vol.100
  • 9
    • 0034164230 scopus 로고    scopus 로고
    • Additive Logistic Regression: A Statistical View of Boosting
    • J. Friedman, T. Hastie and R. Tibshirani, "Additive Logistic Regression: A Statistical View of Boosting," Annals of Statistics, vol. 28, no. 2, pp. 337-407, 1998.
    • (1998) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering
    • IEEE Computer Society
    • Z. Tu, "Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering," in Proceedings of the Tenth International Conference on Computer Vision. IEEE Computer Society, 2005, pp. 1589-1596.
    • (2005) Proceedings of the Tenth International Conference on Computer Vision , pp. 1589-1596
    • Tu, Z.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-theoretic Generalization of On-line Learning and an Application to Boosting
    • Y. Freund and R. E. Schapire, "A Decision-theoretic Generalization of On-line Learning and an Application to Boosting," Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • December
    • R. E. Shapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Machine Learning, vol. 37, no. 3, pp. 297-336, December 2000.
    • (2000) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Shapire, R.E.1    Singer, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.