-
1
-
-
0003482568
-
-
Verlag Chemie, Weinheim
-
F. A. Cotton, G. Wilkinson, Anorganische Chemie, 4th ed., Verlag Chemie, Weinheim, 1982, p. 767.
-
(1982)
Anorganische Chemie, 4th Ed.
, pp. 767
-
-
Cotton, F.A.1
Wilkinson, G.2
-
2
-
-
0346304102
-
-
For reviews on non-heme iron catalysts in oxidation reactions, see: a) M. Fontecave, S. Ménage, C. Duboc-Toia, Coord. Chem. Rev. 1998, 178-180, 1555-1572;
-
(1998)
Coord. Chem. Rev.
, vol.178-180
, pp. 1555-1572
-
-
Fontecave, M.1
Ménage, S.2
Duboc-Toia, C.3
-
3
-
-
0033802342
-
-
and references therein
-
b) M. Costas, K. Chen, L. Que, Jr., Coord. Chem. Rev. 2000, 200-202, 517-544, and references therein.
-
(2000)
Coord. Chem. Rev.
, vol.200-202
, pp. 517-544
-
-
Costas, M.1
Chen, K.2
Que Jr., L.3
-
4
-
-
0003908350
-
-
(Ed.: G. Strukul), Kluwer Academic, Dordrecht
-
For overviews on the use of hydrogen peroxide in oxidation reactions, see: a) Catalytic Oxidations with Hydrogen Peroxide as Oxidant (Ed.: G. Strukul), Kluwer Academic, Dordrecht, 1992;
-
(1992)
Catalytic Oxidations with Hydrogen Peroxide As Oxidant
-
-
-
8
-
-
0001085898
-
-
(Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim
-
For reviews on asymmetric sulfoxidations, see: a) H. B. Kagan, T. Luukas in Transition Metals for Organic Synthesis (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 1998, pp. 361-373;
-
(1998)
Transition Metals for Organic Synthesis
, pp. 361-373
-
-
Kagan, H.B.1
Luukas, T.2
-
9
-
-
0003544583
-
-
(Ed.: I. Ojima), Wiley-VCH, New York
-
b) H. B. Kagan in Catalytic Asymmetric Synthesis, 2nd ed. (Ed.: I. Ojima), Wiley-VCH, New York, 2000, pp. 327-356;
-
(2000)
Catalytic Asymmetric Synthesis, 2nd Ed.
, pp. 327-356
-
-
Kagan, H.B.1
-
10
-
-
0001736321
-
-
(Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin
-
c) C. Bolm, K. Muñiz, J. P. Hildebrand in Comprehensive Asymmetric Catalysis (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999, pp. 697-713;
-
(1999)
Hildebrand in Comprehensive Asymmetric Catalysis
, pp. 697-713
-
-
Bolm, C.1
Muñiz, K.2
Hildebrand, J.P.3
-
11
-
-
0141508049
-
-
d) for a recent review on chiral sulfoxides, see: I. Fernández, N. Khiar, Chem. Rev. 2003, 103, 3651-3705.
-
(2003)
Chem. Rev.
, vol.103
, pp. 3651-3705
-
-
Fernández, I.1
Khiar, N.2
-
12
-
-
33745458109
-
-
One of the most widely sold drugs in the world (with total sales in 2002 of US$ 6.6 billion) is the chiral sulfoxide omeprazole. Its enantioselective synthesis involves an asymmetric sulfide oxidation. For a summary of recent developments and data, see: A. M. Rouhi, Chem. Eng. News 2003, 81(19), 56-61.
-
(2003)
Chem. Eng. News
, vol.81
, Issue.19
, pp. 56-61
-
-
Rouhi, A.M.1
-
13
-
-
0007894254
-
-
For other iron-catalyzed sulfoxidations, see: a) J. T. Groves, P. Viski, J. Org. Chem. 1990, 55, 3628-3634;
-
(1990)
J. Org. Chem.
, vol.55
, pp. 3628-3634
-
-
Groves, J.T.1
Viski, P.2
-
15
-
-
0025827161
-
-
c) Y. Naruta, F. Tani, K. Maruyama, Tetrahedron: Asymmetry 1991, 2, 533-542;
-
(1991)
Tetrahedron: Asymmetry
, vol.2
, pp. 533-542
-
-
Naruta, Y.1
Tani, F.2
Maruyama, K.3
-
16
-
-
37049075116
-
-
d) L.-C. Chiang, K. Konishi, T. Aida, S. Inoue, J. Chem. Soc. Chem. Commun. 1992, 254-256;
-
(1992)
J. Chem. Soc. Chem. Commun.
, pp. 254-256
-
-
Chiang, L.-C.1
Konishi, K.2
Aida, T.3
Inoue, S.4
-
17
-
-
0026822037
-
-
e) Q. L. Zhou, K. C. Chen, Z. H. Zhu, J. Mol. Catal. 1992, 72, 59-65;
-
(1992)
J. Mol. Catal.
, vol.72
, pp. 59-65
-
-
Zhou, Q.L.1
Chen, K.C.2
Zhu, Z.H.3
-
18
-
-
0343035615
-
-
f) C. Duboc-Toia, S. Ménage C. Lambeaux, M. Fontecave, Tetrahedron Lett. 1997, 38, 3727-3730;
-
(1997)
Tetrahedron Lett.
, vol.38
, pp. 3727-3730
-
-
Duboc-Toia, C.1
Ménage, S.2
Lambeaux, C.3
Fontecave, M.4
-
19
-
-
0000813678
-
-
g) C. Duboc-Toia, S. Ménage, R. Y. N. Ho, L. Que, Jr., M. Fontecave, Inorg. Chem. 1999, 38, 1261-1268;
-
(1999)
Inorg. Chem.
, vol.38
, pp. 1261-1268
-
-
Duboc-Toia, C.1
Ménage, S.2
Ho, R.Y.N.3
Que Jr., L.4
Fontecave, M.5
-
20
-
-
0036501377
-
-
h) Y. Mekmouche, H. Hummel, R. Y. N. Ho, L. Que, Jr., V. Schünemann, F. Thomas, A. X. Trautwein, C. Lebrun, K. Gorgy, J.-C Leprêtre, M.-N. Collomb, A. Deronzier, M. Fontecave, S. Ménage, Chem. Eur. J. 2002, 8, 1196-1204.
-
(2002)
Chem. Eur. J.
, vol.8
, pp. 1196-1204
-
-
Mekmouche, Y.1
Hummel, H.2
Ho, R.Y.N.3
Que Jr., L.4
Schünemann, V.5
Thomas, F.6
Trautwein, A.X.7
Lebrun, C.8
Gorgy, K.9
Leprêtre, J.-C.10
Collomb, M.-N.11
Deronzier, A.12
Fontecave, M.13
Ménage, S.14
-
21
-
-
4644283257
-
-
J. Legros, C. Bolm, Angew. Chem. 2003, 115, 5645-5647; Angew. Chem. Int. Ed. 2003, 42, 5487-5489.
-
(2003)
Angew. Chem.
, vol.115
, pp. 5645-5647
-
-
Legros, J.1
Bolm, C.2
-
22
-
-
0344845085
-
-
J. Legros, C. Bolm, Angew. Chem. 2003, 115, 5645-5647; Angew. Chem. Int. Ed. 2003, 42, 5487-5489.
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 5487-5489
-
-
-
23
-
-
0000552681
-
-
2. Most interestingly, the same ligand 3 (derived from 3,5-di-iodosalicyladehyde) that is optimal for the V-catalyzed asymmetric sulfur oxidation is also optimal in the iron-promoted process. For the vanadium-catalyzed reaction, see: a) C. Bolm, F. Bienewald, Angew. Chem. 1995, 107, 2883-2885; Angew. Chem. Int. Ed. Engl. 1995, 34, 2640-2642;
-
(1995)
Angew. Chem.
, vol.107
, pp. 2883-2885
-
-
Bolm, C.1
Bienewald, F.2
-
24
-
-
0000957749
-
-
2. Most interestingly, the same ligand 3 (derived from 3,5-di-iodosalicyladehyde) that is optimal for the V-catalyzed asymmetric sulfur oxidation is also optimal in the iron-promoted process. For the vanadium-catalyzed reaction, see: a) C. Bolm, F. Bienewald, Angew. Chem. 1995, 107, 2883-2885; Angew. Chem. Int. Ed. Engl. 1995, 34, 2640-2642;
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 2640-2642
-
-
-
25
-
-
0030963240
-
-
b) C. Bolm, G. Schlingloff, F. Bienewald, J. Mol. Catal. A 1997, 117, 347-350;
-
(1997)
J. Mol. Catal. A
, vol.117
, pp. 347-350
-
-
Bolm, C.1
Schlingloff, G.2
Bienewald, F.3
-
27
-
-
0036062692
-
-
d) B. Pelotier, M. S. Anson, I. B. Campbell, S. J. F. Macdonald, G. Priem, R. F. W. Jackson, Synlett 2002, 1055-1060;
-
(2002)
Synlett
, pp. 1055-1060
-
-
Pelotier, B.1
Anson, M.S.2
Campbell, I.B.3
Macdonald, S.J.F.4
Priem, G.5
Jackson, R.F.W.6
-
28
-
-
0037427992
-
-
e) S. A. Blum, R. G. Bergman, J. A. Ellman, J. Org. Chem. 2003, 68, 150-155;
-
(2003)
J. Org. Chem.
, vol.68
, pp. 150-155
-
-
Blum, S.A.1
Bergman, R.G.2
Ellman, J.A.3
-
30
-
-
0037295718
-
-
and references therein
-
g) for a review, see: C. Bolm, Coord. Chem. Rev. 2003, 237, 245-256, and references therein.
-
(2003)
Coord. Chem. Rev.
, vol.237
, pp. 245-256
-
-
Bolm, C.1
-
31
-
-
0000445631
-
-
For an interesting list of additives used in metal-catalyzed epoxidation with hydrogen peroxide, see reference [3c]; for a general review on additive effects in catalysis, see: E. M. Vogl, H. Gröger, M. Shibasaki, Angew. Chem. 1999, 111, 1672-1680; Angew. Chem. Int. Ed. 1999, 38, 1570-1577.
-
(1999)
Angew. Chem.
, vol.111
, pp. 1672-1680
-
-
Vogl, E.M.1
Gröger, H.2
Shibasaki, M.3
-
32
-
-
0345711474
-
-
For an interesting list of additives used in metal-catalyzed epoxidation with hydrogen peroxide, see reference [3c]; for a general review on additive effects in catalysis, see: E. M. Vogl, H. Gröger, M. Shibasaki, Angew. Chem. 1999, 111, 1672-1680; Angew. Chem. Int. Ed. 1999, 38, 1570-1577.
-
(1999)
Angew. Chem. Int. Ed.
, vol.38
, pp. 1570-1577
-
-
-
33
-
-
0036140182
-
-
This strategy has already been demonstrated in asymmetric sulfoxidations: Maruyama and co-workers used 1-methylimidazole with iron porphyrin catalysts,[6b,c] and Katsuki and co-workers added methanol to Bolm's vanadium catalyst (C. Ohta, H. Shimizu, A. Kondo, T. Katsuki, Synlett 2002, 161-163). In both cases improvements in enantioselectivities were observed, whereas turnovers and yields did not increase. The use of those additives in the iron-catalyzed reaction shown in Scheme 1 had a negative effect.
-
(2002)
Synlett
, pp. 161-163
-
-
Ohta, C.1
Shimizu, H.2
Kondo, A.3
Katsuki, T.4
-
34
-
-
0034829408
-
-
M. C. White, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 7194-7195.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 7194-7195
-
-
White, M.C.1
Doyle, A.G.2
Jacobsen, E.N.3
-
35
-
-
4644252167
-
-
note
-
4N4, 82% ee.
-
-
-
-
36
-
-
4644345900
-
-
note
-
In oxidations that give sulfoxides with high ee values (≥ 90%) significant amounts of sulfone (ca. 15%) were detected in the crude product. Preliminary studies revealed the existence of a kinetic resolution process that enhances the inherent ee value of the sulfoxide. This behavior contrasts that found in the original process (without an additive[7]). Details of these findings will be reported in due course.
-
-
-
-
37
-
-
1542348939
-
-
and references therein
-
For a review on models for non-heme carboxylate-bridged diiron metalloproteins, see: E. Y. Tshuva, S. J. Lippard, Chem. Rev. 2004, 104, 987-1012, and references therein.
-
(2004)
Chem. Rev.
, vol.104
, pp. 987-1012
-
-
Tshuva, E.Y.1
Lippard, S.J.2
|