-
1
-
-
0001882616
-
Fast algorithms for mining association rules
-
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules Proceedings of the VLDB94 pp. 478-499.
-
(1994)
Proceedings of the VLDB94
, pp. 478-499
-
-
Agrawal, R.1
Srikant, R.2
-
2
-
-
0038969998
-
Outlier detection for high dimensional data
-
Aggarwal, C., & Yu, P. (2001). Outlier detection for high dimensional data Proceedings of the SIGMOD01 pp. 37-46.
-
(2001)
Proceedings of the SIGMOD01
, pp. 37-46
-
-
Aggarwal, C.1
Yu, P.2
-
3
-
-
79957798213
-
Fast outlier detection in high dimensional spaces
-
Angiulli, F., & Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces Proceedings of the PKDD02 pp. 25-36.
-
(2002)
Proceedings of the PKDD02
, pp. 25-36
-
-
Angiulli, F.1
Pizzuti, C.2
-
5
-
-
85039571873
-
A linear method for deviation detection in large databases
-
Arning, A., Agrawal, R., & Raghavan, P. (1996). A linear method for deviation detection in large databases Proceedings of the KDD96 pp. 164-169.
-
(1996)
Proceedings of the KDD96
, pp. 164-169
-
-
Arning, A.1
Agrawal, R.2
Raghavan, P.3
-
7
-
-
77952380096
-
Mining distance based outliers in near linear time with randomization and a simple pruning rule
-
Bay, S. D., & Schwabacher, M. (2003). Mining distance based outliers in near linear time with randomization and a simple pruning rule Proceedings of the KDD03.
-
(2003)
Proceedings of the KDD03
-
-
Bay, S.D.1
Schwabacher, M.2
-
8
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers Proceedings of the SICMOD00 pp. 93-104.
-
(2000)
Proceedings of the SICMOD00
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.P.2
Ng, R.T.3
Sander, J.4
-
9
-
-
0041339696
-
Modified support vector novelty detector using training data with outliers
-
Cao, L. J., Lee, H. P., & Chong, W. K. (2003). Modified support vector novelty detector using training data with outliers. Pattern Recognition Letters, 24(14), 2479-2487.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.14
, pp. 2479-2487
-
-
Cao, L.J.1
Lee, H.P.2
Chong, W.K.3
-
12
-
-
0035789256
-
Magical thinking in data mining: Lessons from CoIL challenge
-
Elkan, C. (2001). Magical thinking in data mining: lessons from CoIL challenge 2000 Proceedings of the KDD01.
-
(2001)
2000 Proceedings of the KDD01
-
-
Elkan, C.1
-
13
-
-
0002318328
-
Clustering categorical data: An approach based on dynamic systems
-
Gibson, D., Kleiberg, J., & Raghavan, P. (1998). Clustering categorical data: an approach based on dynamic systems Proceedings of the VLDB98 pp. 311-323.
-
(1998)
Proceedings of the VLDB98
, pp. 311-323
-
-
Gibson, D.1
Kleiberg, J.2
Raghavan, P.3
-
14
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
Han, J., Pei, J., & Yin, J. (2000). Mining frequent patterns without candidate generation Proceedings of the SICMOD00 pp. 1-12.
-
(2000)
Proceedings of the SICMOD00
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, J.3
-
15
-
-
84864859588
-
Outlier detection using replicator neural networks
-
Harkins, S., He, H., Willams, G. J., & Baster, R. A. (2002). Outlier detection using replicator neural networks Proceedings of the DaWaK02 pp. 170-180.
-
(2002)
Proceedings of the DaWaK02
, pp. 170-180
-
-
Harkins, S.1
He, H.2
Willams, G.J.3
Baster, R.A.4
-
17
-
-
0242582774
-
Outlier detection integrating semantic knowledge
-
He, Z., Deng, S., & Xu, X. (2002). Outlier detection integrating semantic knowledge Proceedings of the WAIM02 pp. 126-131.
-
(2002)
Proceedings of the WAIM02
, pp. 126-131
-
-
He, Z.1
Deng, S.2
Xu, X.3
-
18
-
-
0037410488
-
Discovering cluster based local outliers
-
He, Z., Xu, X., & Deng, S. (2003). Discovering cluster based local outliers. Pattern Recognition Letters, 24(9-10), 1651-1660.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.9-10
, pp. 1651-1660
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
19
-
-
0036740348
-
Squeezer: An efficient algorithm for clustering categorical data
-
He, Z., Xu, X., & Deng, S. (2002a). Squeezer: an efficient algorithm for clustering categorical data. Journal of Computer Science and Technology, 17(5), 611-624.
-
(2002)
Journal of Computer Science and Technology
, vol.17
, Issue.5
, pp. 611-624
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
20
-
-
4544268676
-
FP-outlier: Frequent pattern based outlier detection
-
Harbin Institute of Technology
-
He, Z., Xu, X., & Deng, S. (2002b). FP-outlier: Frequent pattern based outlier detection Technology Report. Harbin Institute of Technology.
-
(2002)
Technology Report
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
21
-
-
0142120485
-
Detecting pattern-based outliers
-
Hu, T., & Sung, S. Y. (2003). Detecting pattern-based outliers. Pattern Recognition Letters, 24(16), 3059-3068.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.16
, pp. 3059-3068
-
-
Hu, T.1
Sung, S.Y.2
-
22
-
-
0035336998
-
Two-phase clustering process for outliers detection
-
Jiang, M. F., Tseng, S. S., & Su, C. M. (2001). Two-phase clustering process for outliers detection. Pattern Recognition Letters, 22(6,7), 691-700.
-
(2001)
Pattern Recognition Letters
, vol.22
, Issue.6-7
, pp. 691-700
-
-
Jiang, M.F.1
Tseng, S.S.2
Su, C.M.3
-
24
-
-
84977797978
-
Fast computation of 2-dimensional depth contours
-
Johnson, T., Kwok, I., & Ng, R. (1998). Fast computation of 2-dimensional depth contours Proceedings of the KDD98 pp. 224-228.
-
(1998)
Proceedings of the KDD98
, pp. 224-228
-
-
Johnson, T.1
Kwok, I.2
Ng, R.3
-
25
-
-
85170286889
-
A unified notion of outliers: Properties and computation
-
Knorr, E., & Ng, R. (1997). A unified notion of outliers: Properties and computation Proceedings of the KDD97 pp. 219-222.
-
(1997)
Proceedings of the KDD97
, pp. 219-222
-
-
Knorr, E.1
Ng, R.2
-
26
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
Knorr, E., & Ng, R. (1998). Algorithms for mining distance-based outliers in large datasets Proceedings of the VLDB98 pp. 392-403.
-
(1998)
Proceedings of the VLDB98
, pp. 392-403
-
-
Knorr, E.1
Ng, R.2
-
27
-
-
0012905555
-
Finding intentional knowledge of distance-based outliers
-
Knorr, E., & Ng, R. (1999). Finding intentional knowledge of distance-based outliers Proceedings of the VLDB99 pp. 211-222.
-
(1999)
Proceedings of the VLDB99
, pp. 211-222
-
-
Knorr, E.1
Ng, R.2
-
28
-
-
0034133513
-
Distance-based outliers: Algorithms and applications
-
Knorr, E., Ng, R., & Tucakov, T. (2000). Distance-based outliers: Algorithms and applications. VLDB Journal, 8(3 and 4), 237-253.
-
(2000)
VLDB Journal
, vol.8
, Issue.3-4
, pp. 237-253
-
-
Knorr, E.1
Ng, R.2
Tucakov, T.3
-
29
-
-
4544268173
-
How to detect potential customers CoIL Challenge 2000: The insurance company case
-
Netherlands: Leiden Institute of Advanced Computer Science
-
Lewandowski, A. (2000). How to detect potential customers CoIL Challenge 2000: The Insurance Company Case, Technical Report 2000-09. Netherlands: Leiden Institute of Advanced Computer Science.
-
(2000)
Technical Report
, vol.2000
, Issue.9
-
-
Lewandowski, A.1
-
30
-
-
85161651554
-
Data mining for direct marketing: Problems and solutions
-
Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions Proceedings of the KDD98 pp. 73-79.
-
(1998)
Proceedings of the KDD98
, pp. 73-79
-
-
Ling, C.X.1
Li, C.2
-
31
-
-
0037369424
-
Scoring the data using association rules
-
Liu, B., Ma, Y., Wong, C. K., & Yu, P. S. (2003). Scoring the data using association rules. Applied Intelligence, 18(2), 119-135.
-
(2003)
Applied Intelligence
, vol.18
, Issue.2
, pp. 119-135
-
-
Liu, B.1
Ma, Y.2
Wong, C.K.3
Yu, P.S.4
-
32
-
-
0003408496
-
Uci repository of machine learning databases
-
University of California: Department of Information and Computer Science
-
Merz, G., & Murphy, P. (1996). Uci repository of machine learning databases Technical Report. University of California: Department of Information and Computer Science http://www.ics.uci.edu/mlearn/MLRepository.html.
-
(1996)
Technical Report
-
-
Merz, G.1
Murphy, P.2
-
35
-
-
0345359208
-
Fast outlier detection using the local correlation integal
-
Papadimitriou, S., Kitagawa, H., Gibbons, P. B., & Faloutsos, C. (2003). Fast outlier detection using the local correlation integal Proceedings of the ICDE03.
-
(2003)
Proceedings of the ICDE03
-
-
Papadimitriou, S.1
Kitagawa, H.2
Gibbons, P.B.3
Faloutsos, C.4
-
36
-
-
7044220237
-
A hybrid method for patterns mining and outliers detection in the web usage log
-
Petrovskiy, M. (2003). A hybrid method for patterns mining and outliers detection in the web usage log Proceedings of the AWIC03 pp. 318-328.
-
(2003)
Proceedings of the AWIC03
, pp. 318-328
-
-
Petrovskiy, M.1
-
39
-
-
0000487102
-
Estimating the support of a high dimensional distribution
-
Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high dimensional distribution. Neural Computation, 13(7), 1443-1472.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1472
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
40
-
-
0035245385
-
Fuzzy modeling of client preference from large data sets: An application to target selection in direct marketing
-
Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. IEEE Transactions on Fuzzy Systems, 9(1), 153-163.
-
(2001)
IEEE Transactions on Fuzzy Systems
, vol.9
, Issue.1
, pp. 153-163
-
-
Setnes, M.1
Kaymak, U.2
-
42
-
-
0004951689
-
-
Englewood Cliffs, NJ: Prentice-Hall
-
SPSS Inc (1993). SPSS CHAID for Windows 6.0. Englewood Cliffs, NJ: Prentice-Hall.
-
(1993)
SPSS CHAID for Windows 6.0
-
-
-
43
-
-
84945281435
-
Enhancing effectiveness of outlier detections for low density patterns
-
Tang, T., Chen, Z., Fu, A. W., & Cheung, D. W. (2002). Enhancing effectiveness of outlier detections for low density patterns Proceedings of the PAKDD02 pp. 535-548.
-
(2002)
Proceedings of the PAKDD02
, pp. 535-548
-
-
Tang, T.1
Chen, Z.2
Fu, A.W.3
Cheung, D.W.4
-
44
-
-
0033220728
-
Support vector data description
-
Tax, D. M. J., & Duin, R. P. W. (1999). Support vector data description. Pattern Recognition Letters, 20(11-13), 1191-1199.
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.11-13
, pp. 1191-1199
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
45
-
-
4544307955
-
-
The Coil dataset can found at: http://www.liacs.nl/(putten/library/ cc2000/.
-
-
-
-
46
-
-
7444240300
-
HOT: Hypergraph-based outlier test for categorical data
-
Wei, L., Qian, W., Zhou, A., Jin, W., & Yu, J. X. (2003). HOT: hypergraph-based outlier test for categorical data Proceedings of the PAKDD03 pp. 399-410.
-
(2003)
Proceedings of the PAKDD03
, pp. 399-410
-
-
Wei, L.1
Qian, W.2
Zhou, A.3
Jin, W.4
Yu, J.X.5
-
47
-
-
27144452309
-
A comparative study of rnn for outlier detection in data mining
-
Willams, G. J., Baster, R. A., He, H., Harkins, S., & Gu, L. (2002). A comparative study of rnn for outlier detection in data mining Proceedings of the ICDM02 pp. 709-712.
-
(2002)
Proceedings of the ICDM02
, pp. 709-712
-
-
Willams, G.J.1
Baster, R.A.2
He, H.3
Harkins, S.4
Gu, L.5
-
48
-
-
0035788911
-
Discovering outlier filtering rules from unlabeled data-combining a supervised learner with an unsupervised learner
-
Yamanishi, K., & Takeuchi, J. (2001). Discovering outlier filtering rules from unlabeled data-combining a supervised learner with an unsupervised learner Proceedings of the KDD01 pp. 389-394.
-
(2001)
Proceedings of the KDD01
, pp. 389-394
-
-
Yamanishi, K.1
Takeuchi, J.2
-
49
-
-
0034592923
-
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
Yamanishi, K., Takeuchi, J., & Williams, G. (2000). On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms Proceedings of the KDD00 pp. 320-325.
-
(2000)
Proceedings of the KDD00
, pp. 320-325
-
-
Yamanishi, K.1
Takeuchi, J.2
Williams, G.3
-
50
-
-
0036973522
-
Using market value functions for targeted marketing data mining
-
Yao, Y., Zhong, N., Huang, J., Ou, C., & Liu, C. (2002). Using market value functions for targeted marketing data mining. International Journal of Pattern Recognition and Artificial Intelligence, 16(8), 1117-1132.
-
(2002)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.16
, Issue.8
, pp. 1117-1132
-
-
Yao, Y.1
Zhong, N.2
Huang, J.3
Ou, C.4
Liu, C.5
-
51
-
-
85132247975
-
Findoul: Finding out outliers in large datasets
-
Yu, D., Sheikholeslami, G., & Zhang, A. (2002). Findoul: finding out outliers in large datasets. Knowledge and Information Systems, 4(4), 387-412.
-
(2002)
Knowledge and Information Systems
, vol.4
, Issue.4
, pp. 387-412
-
-
Yu, D.1
Sheikholeslami, G.2
Zhang, A.3
|