메뉴 건너뛰기




Volumn 27, Issue 4, 2004, Pages 681-697

Mining class outliers: Concepts, algorithms and applications in CRM

Author keywords

CRM; Data mining; Direct marketing; Outlier

Indexed keywords

ALGORITHMS; CUSTOMER SATISFACTION; DATABASE SYSTEMS; MARKETING; NEURAL NETWORKS; SECURITY OF DATA; SEMANTICS;

EID: 4544379047     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1010/j.eswa.2004.07.002     Document Type: Review
Times cited : (63)

References (52)
  • 1
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules Proceedings of the VLDB94 pp. 478-499.
    • (1994) Proceedings of the VLDB94 , pp. 478-499
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 0038969998 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • Aggarwal, C., & Yu, P. (2001). Outlier detection for high dimensional data Proceedings of the SIGMOD01 pp. 37-46.
    • (2001) Proceedings of the SIGMOD01 , pp. 37-46
    • Aggarwal, C.1    Yu, P.2
  • 3
    • 79957798213 scopus 로고    scopus 로고
    • Fast outlier detection in high dimensional spaces
    • Angiulli, F., & Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces Proceedings of the PKDD02 pp. 25-36.
    • (2002) Proceedings of the PKDD02 , pp. 25-36
    • Angiulli, F.1    Pizzuti, C.2
  • 5
    • 85039571873 scopus 로고    scopus 로고
    • A linear method for deviation detection in large databases
    • Arning, A., Agrawal, R., & Raghavan, P. (1996). A linear method for deviation detection in large databases Proceedings of the KDD96 pp. 164-169.
    • (1996) Proceedings of the KDD96 , pp. 164-169
    • Arning, A.1    Agrawal, R.2    Raghavan, P.3
  • 7
    • 77952380096 scopus 로고    scopus 로고
    • Mining distance based outliers in near linear time with randomization and a simple pruning rule
    • Bay, S. D., & Schwabacher, M. (2003). Mining distance based outliers in near linear time with randomization and a simple pruning rule Proceedings of the KDD03.
    • (2003) Proceedings of the KDD03
    • Bay, S.D.1    Schwabacher, M.2
  • 9
    • 0041339696 scopus 로고    scopus 로고
    • Modified support vector novelty detector using training data with outliers
    • Cao, L. J., Lee, H. P., & Chong, W. K. (2003). Modified support vector novelty detector using training data with outliers. Pattern Recognition Letters, 24(14), 2479-2487.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2479-2487
    • Cao, L.J.1    Lee, H.P.2    Chong, W.K.3
  • 12
    • 0035789256 scopus 로고    scopus 로고
    • Magical thinking in data mining: Lessons from CoIL challenge
    • Elkan, C. (2001). Magical thinking in data mining: lessons from CoIL challenge 2000 Proceedings of the KDD01.
    • (2001) 2000 Proceedings of the KDD01
    • Elkan, C.1
  • 13
    • 0002318328 scopus 로고    scopus 로고
    • Clustering categorical data: An approach based on dynamic systems
    • Gibson, D., Kleiberg, J., & Raghavan, P. (1998). Clustering categorical data: an approach based on dynamic systems Proceedings of the VLDB98 pp. 311-323.
    • (1998) Proceedings of the VLDB98 , pp. 311-323
    • Gibson, D.1    Kleiberg, J.2    Raghavan, P.3
  • 14
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han, J., Pei, J., & Yin, J. (2000). Mining frequent patterns without candidate generation Proceedings of the SICMOD00 pp. 1-12.
    • (2000) Proceedings of the SICMOD00 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, J.3
  • 17
    • 0242582774 scopus 로고    scopus 로고
    • Outlier detection integrating semantic knowledge
    • He, Z., Deng, S., & Xu, X. (2002). Outlier detection integrating semantic knowledge Proceedings of the WAIM02 pp. 126-131.
    • (2002) Proceedings of the WAIM02 , pp. 126-131
    • He, Z.1    Deng, S.2    Xu, X.3
  • 18
    • 0037410488 scopus 로고    scopus 로고
    • Discovering cluster based local outliers
    • He, Z., Xu, X., & Deng, S. (2003). Discovering cluster based local outliers. Pattern Recognition Letters, 24(9-10), 1651-1660.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1651-1660
    • He, Z.1    Xu, X.2    Deng, S.3
  • 19
    • 0036740348 scopus 로고    scopus 로고
    • Squeezer: An efficient algorithm for clustering categorical data
    • He, Z., Xu, X., & Deng, S. (2002a). Squeezer: an efficient algorithm for clustering categorical data. Journal of Computer Science and Technology, 17(5), 611-624.
    • (2002) Journal of Computer Science and Technology , vol.17 , Issue.5 , pp. 611-624
    • He, Z.1    Xu, X.2    Deng, S.3
  • 20
    • 4544268676 scopus 로고    scopus 로고
    • FP-outlier: Frequent pattern based outlier detection
    • Harbin Institute of Technology
    • He, Z., Xu, X., & Deng, S. (2002b). FP-outlier: Frequent pattern based outlier detection Technology Report. Harbin Institute of Technology.
    • (2002) Technology Report
    • He, Z.1    Xu, X.2    Deng, S.3
  • 21
    • 0142120485 scopus 로고    scopus 로고
    • Detecting pattern-based outliers
    • Hu, T., & Sung, S. Y. (2003). Detecting pattern-based outliers. Pattern Recognition Letters, 24(16), 3059-3068.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.16 , pp. 3059-3068
    • Hu, T.1    Sung, S.Y.2
  • 22
    • 0035336998 scopus 로고    scopus 로고
    • Two-phase clustering process for outliers detection
    • Jiang, M. F., Tseng, S. S., & Su, C. M. (2001). Two-phase clustering process for outliers detection. Pattern Recognition Letters, 22(6,7), 691-700.
    • (2001) Pattern Recognition Letters , vol.22 , Issue.6-7 , pp. 691-700
    • Jiang, M.F.1    Tseng, S.S.2    Su, C.M.3
  • 23
    • 0035788909 scopus 로고    scopus 로고
    • Mining top-n local outliers in large databases
    • Jin, W., Tung, A. K. H., & Han, J. (2001). Mining top-n local outliers in large databases Proceedings of the KDD01 pp. 293-298.
    • (2001) Proceedings of the KDD01 , pp. 293-298
    • Jin, W.1    Tung, A.K.H.2    Han, J.3
  • 24
    • 84977797978 scopus 로고    scopus 로고
    • Fast computation of 2-dimensional depth contours
    • Johnson, T., Kwok, I., & Ng, R. (1998). Fast computation of 2-dimensional depth contours Proceedings of the KDD98 pp. 224-228.
    • (1998) Proceedings of the KDD98 , pp. 224-228
    • Johnson, T.1    Kwok, I.2    Ng, R.3
  • 25
    • 85170286889 scopus 로고    scopus 로고
    • A unified notion of outliers: Properties and computation
    • Knorr, E., & Ng, R. (1997). A unified notion of outliers: Properties and computation Proceedings of the KDD97 pp. 219-222.
    • (1997) Proceedings of the KDD97 , pp. 219-222
    • Knorr, E.1    Ng, R.2
  • 26
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • Knorr, E., & Ng, R. (1998). Algorithms for mining distance-based outliers in large datasets Proceedings of the VLDB98 pp. 392-403.
    • (1998) Proceedings of the VLDB98 , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 27
    • 0012905555 scopus 로고    scopus 로고
    • Finding intentional knowledge of distance-based outliers
    • Knorr, E., & Ng, R. (1999). Finding intentional knowledge of distance-based outliers Proceedings of the VLDB99 pp. 211-222.
    • (1999) Proceedings of the VLDB99 , pp. 211-222
    • Knorr, E.1    Ng, R.2
  • 28
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • Knorr, E., Ng, R., & Tucakov, T. (2000). Distance-based outliers: Algorithms and applications. VLDB Journal, 8(3 and 4), 237-253.
    • (2000) VLDB Journal , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.1    Ng, R.2    Tucakov, T.3
  • 29
    • 4544268173 scopus 로고    scopus 로고
    • How to detect potential customers CoIL Challenge 2000: The insurance company case
    • Netherlands: Leiden Institute of Advanced Computer Science
    • Lewandowski, A. (2000). How to detect potential customers CoIL Challenge 2000: The Insurance Company Case, Technical Report 2000-09. Netherlands: Leiden Institute of Advanced Computer Science.
    • (2000) Technical Report , vol.2000 , Issue.9
    • Lewandowski, A.1
  • 30
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: Problems and solutions
    • Ling, C. X., & Li, C. (1998). Data mining for direct marketing: Problems and solutions Proceedings of the KDD98 pp. 73-79.
    • (1998) Proceedings of the KDD98 , pp. 73-79
    • Ling, C.X.1    Li, C.2
  • 31
    • 0037369424 scopus 로고    scopus 로고
    • Scoring the data using association rules
    • Liu, B., Ma, Y., Wong, C. K., & Yu, P. S. (2003). Scoring the data using association rules. Applied Intelligence, 18(2), 119-135.
    • (2003) Applied Intelligence , vol.18 , Issue.2 , pp. 119-135
    • Liu, B.1    Ma, Y.2    Wong, C.K.3    Yu, P.S.4
  • 32
    • 0003408496 scopus 로고    scopus 로고
    • Uci repository of machine learning databases
    • University of California: Department of Information and Computer Science
    • Merz, G., & Murphy, P. (1996). Uci repository of machine learning databases Technical Report. University of California: Department of Information and Computer Science http://www.ics.uci.edu/mlearn/MLRepository.html.
    • (1996) Technical Report
    • Merz, G.1    Murphy, P.2
  • 36
    • 7044220237 scopus 로고    scopus 로고
    • A hybrid method for patterns mining and outliers detection in the web usage log
    • Petrovskiy, M. (2003). A hybrid method for patterns mining and outliers detection in the web usage log Proceedings of the AWIC03 pp. 318-328.
    • (2003) Proceedings of the AWIC03 , pp. 318-328
    • Petrovskiy, M.1
  • 40
    • 0035245385 scopus 로고    scopus 로고
    • Fuzzy modeling of client preference from large data sets: An application to target selection in direct marketing
    • Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. IEEE Transactions on Fuzzy Systems, 9(1), 153-163.
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.1 , pp. 153-163
    • Setnes, M.1    Kaymak, U.2
  • 42
    • 0004951689 scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • SPSS Inc (1993). SPSS CHAID for Windows 6.0. Englewood Cliffs, NJ: Prentice-Hall.
    • (1993) SPSS CHAID for Windows 6.0
  • 43
    • 84945281435 scopus 로고    scopus 로고
    • Enhancing effectiveness of outlier detections for low density patterns
    • Tang, T., Chen, Z., Fu, A. W., & Cheung, D. W. (2002). Enhancing effectiveness of outlier detections for low density patterns Proceedings of the PAKDD02 pp. 535-548.
    • (2002) Proceedings of the PAKDD02 , pp. 535-548
    • Tang, T.1    Chen, Z.2    Fu, A.W.3    Cheung, D.W.4
  • 44
    • 0033220728 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. M. J., & Duin, R. P. W. (1999). Support vector data description. Pattern Recognition Letters, 20(11-13), 1191-1199.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 45
    • 4544307955 scopus 로고    scopus 로고
    • The Coil dataset can found at: http://www.liacs.nl/(putten/library/ cc2000/.
  • 48
    • 0035788911 scopus 로고    scopus 로고
    • Discovering outlier filtering rules from unlabeled data-combining a supervised learner with an unsupervised learner
    • Yamanishi, K., & Takeuchi, J. (2001). Discovering outlier filtering rules from unlabeled data-combining a supervised learner with an unsupervised learner Proceedings of the KDD01 pp. 389-394.
    • (2001) Proceedings of the KDD01 , pp. 389-394
    • Yamanishi, K.1    Takeuchi, J.2
  • 49
    • 0034592923 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • Yamanishi, K., Takeuchi, J., & Williams, G. (2000). On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms Proceedings of the KDD00 pp. 320-325.
    • (2000) Proceedings of the KDD00 , pp. 320-325
    • Yamanishi, K.1    Takeuchi, J.2    Williams, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.