-
1
-
-
0004292725
-
Transport in Nanostructures
-
D. Ferry S.M. Goodnick Transport in Nanostructures 1997 Cambridge University Press Cambridge
-
(1997)
-
-
Ferry, D.1
Goodnick, S.M.2
-
2
-
-
0003409205
-
Electronic Transport in Mesoscopic Systems
-
S. Datta Electronic Transport in Mesoscopic Systems 1995 Cambridge University Press Cambridge
-
(1995)
-
-
Datta, S.1
-
3
-
-
0003422041
-
Quantum Kinetics in Transport and Optics of Semi-conductors
-
H. Haug A.P. Jauho Quantum Kinetics in Transport and Optics of Semi-conductors second ed. 2007 Springer
-
(2007)
-
-
Haug, H.1
Jauho, A.P.2
-
4
-
-
0034291813
-
Nanoscale device modeling: the Green’s function method
-
S. Datta Nanoscale device modeling: the Green’s function method Supperlattices Microstruct. 28 2000 253 278
-
(2000)
Supperlattices Microstruct.
, vol.28
, pp. 253-278
-
-
Datta, S.1
-
7
-
-
18644369368
-
Simulating quantum transport in nanoscale transistors: real versus mode-space approaches
-
R. Venugopal Z. Ren S. Datta M.S. Lundstrom D. Jovanovic Simulating quantum transport in nanoscale transistors: real versus mode-space approaches J. Appl. Phys. 92 2002 3730 3739
-
(2002)
J. Appl. Phys.
, vol.92
, pp. 3730-3739
-
-
Venugopal, R.1
Ren, Z.2
Datta, S.3
Lundstrom, M.S.4
Jovanovic, D.5
-
8
-
-
2142817221
-
Nonequilibrium electron transport in two-dimensional nanostructures modeled using Green’s functions and the finite-element method
-
P. Havu V. Havu M.J. Puska R.M. Nieminen Nonequilibrium electron transport in two-dimensional nanostructures modeled using Green’s functions and the finite-element method Phys. Rev. B 69 2004 115325
-
(2004)
Phys. Rev. B
, vol.69
, pp. 115325
-
-
Havu, P.1
Havu, V.2
Puska, M.J.3
Nieminen, R.M.4
-
9
-
-
85190396988
-
-
E. Polizzi, S. Datta, Multidimensional nanoscale device modeling: the finite element method applied to the non-equilibrium Green’s function formalism, in: Proceedings of the 2003 Third IEEE Conference on Nanotechnology, pp. 40–43.
-
-
-
-
10
-
-
4344606224
-
A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation
-
J. Wang E. Polizzi M. Lundstrom A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation J. Appl. Phys. 96 2004 2192 2203
-
(2004)
J. Appl. Phys.
, vol.96
, pp. 2192-2203
-
-
Wang, J.1
Polizzi, E.2
Lundstrom, M.3
-
11
-
-
0000637294
-
Approximation of infinite boundary condition and its application to finite element methods
-
H.D. Han X.N. Wu Approximation of infinite boundary condition and its application to finite element methods J. Comput. Math. 3 1985 179 192
-
(1985)
J. Comput. Math.
, vol.3
, pp. 179-192
-
-
Han, H.D.1
Wu, X.N.2
-
12
-
-
2142739347
-
Non-reflecting boundary conditions
-
D. Givoli Non-reflecting boundary conditions J. Comput. Phys. 94 1991 1 29
-
(1991)
J. Comput. Phys.
, vol.94
, pp. 1-29
-
-
Givoli, D.1
-
13
-
-
0001262382
-
Implementation of transparent boundaries for numerical solution of the Schrödinger equation
-
V.A. Baskakov A.V. Popov Implementation of transparent boundaries for numerical solution of the Schrödinger equation Wave Motion 14 1991 123 128
-
(1991)
Wave Motion
, vol.14
, pp. 123-128
-
-
Baskakov, V.A.1
Popov, A.V.2
-
14
-
-
0001315174
-
Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation
-
J.R. Hellums W.R. Frensley Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation Phys. Rev. B 49 1994 2904 2906
-
(1994)
Phys. Rev. B
, vol.49
, pp. 2904-2906
-
-
Hellums, J.R.1
Frensley, W.R.2
-
15
-
-
0010945360
-
Discrete transparent boundary conditions for the numerical solution of Fresnel’s equation
-
F. Schmidt P. Deuflhard Discrete transparent boundary conditions for the numerical solution of Fresnel’s equation Comput. Math. Appl. 29 1995 53 76
-
(1995)
Comput. Math. Appl.
, vol.29
, pp. 53-76
-
-
Schmidt, F.1
Deuflhard, P.2
-
16
-
-
85190399901
-
-
J.S. Papadakis, Impedance formulation of the bottom boundary condition for the parabolic equation model in the underwater acoustics, NORDA Parabolic Equation Workshop, NORDA Tech. Note 143, 1982.
-
-
-
-
17
-
-
0011217467
-
Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics
-
A. Arnold M. Ehrhardt Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics J. Comput. Phys. 145 1998 611 638
-
(1998)
J. Comput. Phys.
, vol.145
, pp. 611-638
-
-
Arnold, A.1
Ehrhardt, M.2
-
18
-
-
4444331530
-
Discrete transparent boundary conditions for the Schrödinger equation: fast calculation approximation and stability
-
A. Arnold M. Ehrhardt I. Sofronov Discrete transparent boundary conditions for the Schrödinger equation: fast calculation approximation and stability Commun. Math. Sci. 1 2003 501 556
-
(2003)
Commun. Math. Sci.
, vol.1
, pp. 501-556
-
-
Arnold, A.1
Ehrhardt, M.2
Sofronov, I.3
-
19
-
-
2542490104
-
Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension
-
S. Jiang L. Greengard Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension Comput. Math. Appl. 47 2004 955 966
-
(2004)
Comput. Math. Appl.
, vol.47
, pp. 955-966
-
-
Jiang, S.1
Greengard, L.2
-
20
-
-
2842549616
-
The quantum transmitting boundary method
-
C.S. Lent D.J. Krikner The quantum transmitting boundary method J. Appl. Phys. 67 1990 6353 6359
-
(1990)
J. Appl. Phys.
, vol.67
, pp. 6353-6359
-
-
Lent, C.S.1
Krikner, D.J.2
-
21
-
-
8744318597
-
Subband decomposition approach for the simulation of quantum electron transport in nanostructures
-
E. Polizzi N.B. Abdallah Subband decomposition approach for the simulation of quantum electron transport in nanostructures J. Comput. Phys. 202 2005 150 180
-
(2005)
J. Comput. Phys.
, vol.202
, pp. 150-180
-
-
Polizzi, E.1
Abdallah, N.B.2
-
22
-
-
35348838440
-
3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices
-
C. Cheng J.H. Lee K.H. Lim H.Z. Massoud Q.H. Liu 3D quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices J. Comput. Phys. 227 2007 455 471
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 455-471
-
-
Cheng, C.1
Lee, J.H.2
Lim, K.H.3
Massoud, H.Z.4
Liu, Q.H.5
-
23
-
-
33750622273
-
Accurate calculation of Green’s function of the Schrödinger equation in a block layered potential
-
S.H. Shao W. Cai H.Z. Tang Accurate calculation of Green’s function of the Schrödinger equation in a block layered potential J. Comput. Phys. 219 2006 733 748
-
(2006)
J. Comput. Phys.
, vol.219
, pp. 733-748
-
-
Shao, S.H.1
Cai, W.2
Tang, H.Z.3
|