메뉴 건너뛰기




Volumn 17, Issue 5, 2008, Pages 930-938

Transmembrane helices that form two opposite homodimeric interactions: An asparagine scan study of αM and β2 integrins

Author keywords

Asparagine scan; GxxxG motif; Infrared; Integrins; Oligomerization; Transmembrane

Indexed keywords

ALPHA INTEGRIN; ALPHA M INTEGRIN; ASPARAGINE; BETA2 INTEGRIN; HOMODIMER;

EID: 43049118255     PISSN: 09618368     EISSN: 1469896X     Source Type: Journal    
DOI: 10.1110/ps.073234208     Document Type: Article
Times cited : (13)

References (50)
  • 1
    • 0037195164 scopus 로고    scopus 로고
    • Three‐dimensional model of the human platelet integrin αIIbβ3 based on electron cryomicroscopy and X‐ray crystallography
    • Adair, B.D. and Yeager, M. 2002. Three‐dimensional model of the human platelet integrin αIIbβ3 based on electron cryomicroscopy and X‐ray crystallography. Proc. Natl. Acad. Sci. 99: 14059–14064.
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , pp. 14059-14064
    • Adair, B.D.1    Yeager, M.2
  • 2
    • 16844381981 scopus 로고    scopus 로고
    • Three‐dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin
    • Adair, B.D., Xiong, J.P., Maddock, C., Goodman, S.L., Arnaout, M.A., and Yeager, M. 2005. Three‐dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin. J. Cell Biol. 168: 1109–1118.
    • (2005) J. Cell Biol. , vol.168 , pp. 1109-1118
    • Adair, B.D.1    Xiong, J.P.2    Maddock, C.3    Goodman, S.L.4    Arnaout, M.A.5    Yeager, M.6
  • 3
    • 0029557910 scopus 로고
    • Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban
    • Adams, P.D., Arkin, I.T., Engelman, D.M., and Brunger, A.T. 1995. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban. Nat. Struct. Biol. 2: 154–162.
    • (1995) Nat. Struct. Biol. , vol.2 , pp. 154-162
    • Adams, P.D.1    Arkin, I.T.2    Engelman, D.M.3    Brunger, A.T.4
  • 4
    • 0032406838 scopus 로고    scopus 로고
    • Statistical analysis of predicted transmembrane α‐helices
    • Arkin, I.T. and Brunger, A.T. 1998. Statistical analysis of predicted transmembrane α‐helices. Biochim. Biophys. Acta 1429: 113–128.
    • (1998) Biochim. Biophys. Acta , vol.1429 , pp. 113-128
    • Arkin, I.T.1    Brunger, A.T.2
  • 6
    • 0030819982 scopus 로고    scopus 로고
    • Site‐directed dichroism as a method for obtaining rotational and orientational constraints for oriented polymers
    • Arkin, I.T., MacKenzie, K.R., and Brunger, A.T. 1997. Site‐directed dichroism as a method for obtaining rotational and orientational constraints for oriented polymers. J. Am. Chem. Soc. 119: 8973–8980.
    • (1997) J. Am. Chem. Soc. , vol.119 , pp. 8973-8980
    • Arkin, I.T.1    MacKenzie, K.R.2    Brunger, A.T.3
  • 7
    • 0035882546 scopus 로고    scopus 로고
    • A new method to model membrane protein structure based on silent amino acid substitutions
    • Briggs, J.A.G., Torres, J., and Arkin, I.T. 2001. A new method to model membrane protein structure based on silent amino acid substitutions. Proteins 44: 370–375.
    • (2001) Proteins , vol.44 , pp. 370-375
    • Briggs, J.A.G.1    Torres, J.2    Arkin, I.T.3
  • 9
    • 0141756175 scopus 로고    scopus 로고
    • Integrin avidity regulation: Are changes in affinity and conformation underemphasized?
    • Carman, C.V. and Springer, T.A. 2003. Integrin avidity regulation: Are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15: 547–556.
    • (2003) Curr. Opin. Cell Biol. , vol.15 , pp. 547-556
    • Carman, C.V.1    Springer, T.A.2
  • 10
    • 0033983453 scopus 로고    scopus 로고
    • Asparagine‐mediated self‐association of a model transmembrane helix
    • Choma, C., Gratkowski, H., Lear, J.D., and DeGrado, W.F. 2000. Asparagine‐mediated self‐association of a model transmembrane helix. Nat. Struct. Biol. 7: 161–166.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 161-166
    • Choma, C.1    Gratkowski, H.2    Lear, J.D.3    DeGrado, W.F.4
  • 11
    • 18944403970 scopus 로고    scopus 로고
    • A coiled‐coil structure of the αIIbβ3 integrin transmembrane and cytoplasmic domains in its resting state
    • Gottschalk, K.E. 2005. A coiled‐coil structure of the αIIbβ3 integrin transmembrane and cytoplasmic domains in its resting state. Structure 13: 703–712.
    • (2005) Structure , vol.13 , pp. 703-712
    • Gottschalk, K.E.1
  • 12
    • 2942587504 scopus 로고    scopus 로고
    • A computational model of transmembrane integrin clustering
    • Gottschalk, K.E. and Kessler, H. 2004. A computational model of transmembrane integrin clustering. Structure 12: 1109–1116.
    • (2004) Structure , vol.12 , pp. 1109-1116
    • Gottschalk, K.E.1    Kessler, H.2
  • 13
    • 0036087390 scopus 로고    scopus 로고
    • Transmembrane signal transduction of the αIIbβ3 integrin
    • Gottschalk, K.E., Adams, P.D., Brunger, A.T., and Kessler, H. 2002. Transmembrane signal transduction of the αIIbβ3 integrin. Protein Sci. 11: 1800–1812.
    • (2002) Protein Sci. , vol.11 , pp. 1800-1812
    • Gottschalk, K.E.1    Adams, P.D.2    Brunger, A.T.3    Kessler, H.4
  • 14
    • 0033517796 scopus 로고    scopus 로고
    • Effects of ligand‐mimetic peptides Arg‐Gly‐Asp‐X (X = Phe, Trp, Ser) on αIIbβ3 integrin conformation and oligomerization
    • Hantgan, R.R., Paumi, C., Rocco, M., and Weisel, J.W. 1999. Effects of ligand‐mimetic peptides Arg‐Gly‐Asp‐X (X = Phe, Trp, Ser) on αIIbβ3 integrin conformation and oligomerization. Biochemistry 38: 14461–14474.
    • (1999) Biochemistry , vol.38 , pp. 14461-14474
    • Hantgan, R.R.1    Paumi, C.2    Rocco, M.3    Weisel, J.W.4
  • 15
    • 0013440521 scopus 로고
    • Principles of internal reflection spectroscopy, in: Internal reflection spectroscopy
    • Harrick, N.J. 1979. Principles of internal reflection spectroscopy. In Internal reflection spectroscopy, pp. 13–65. Wiley, NY.
    • (1979) , pp. 13-65
    • Harrick, N.J.1
  • 16
    • 0003987013 scopus 로고    scopus 로고
    • Extracellular matrix, anchor, and adhesion proteins.
    • Hemler, M. 1999. Extracellular matrix, anchor, and adhesion proteins. Oxford University Press, Oxford, UK.
    • (1999)
    • Hemler, M.1
  • 18
    • 0037145037 scopus 로고    scopus 로고
    • Integrins: Bidirectional, allosteric signaling machines
    • Hynes, R.O. 2002. Integrins: Bidirectional, allosteric signaling machines. Cell 110: 673–687.
    • (2002) Cell , vol.110 , pp. 673-687
    • Hynes, R.O.1
  • 19
    • 0042681786 scopus 로고    scopus 로고
    • Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins
    • Kim, M., Carman, C.V., and Springer, T.A. 2003. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301: 1720–1725.
    • (2003) Science , vol.301 , pp. 1720-1725
    • Kim, M.1    Carman, C.V.2    Springer, T.A.3
  • 20
    • 33644769402 scopus 로고    scopus 로고
    • Alternate interfaces may mediate homomeric and heteromeric assembly in the transmembrane domains of SNARE proteins
    • Kroch, A.E. and Fleming, K.G. 2006. Alternate interfaces may mediate homomeric and heteromeric assembly in the transmembrane domains of SNARE proteins. J. Mol. Biol. 357: 184–194.
    • (2006) J. Mol. Biol. , vol.357 , pp. 184-194
    • Kroch, A.E.1    Fleming, K.G.2
  • 22
    • 0035940359 scopus 로고    scopus 로고
    • Oligomerization of the integrin αIIbβ3: Roles of the transmembrane and cytoplasmic domains
    • Li, R., Babu, C.R., Lear, J.D., Wand, A.J., Bennett, J.S., and DeGrado, W.F. 2001. Oligomerization of the integrin αIIbβ3: Roles of the transmembrane and cytoplasmic domains. Proc. Natl. Acad. Sci. 98: 12462–12467.
    • (2001) Proc. Natl. Acad. Sci. , vol.98 , pp. 12462-12467
    • Li, R.1    Babu, C.R.2    Lear, J.D.3    Wand, A.J.4    Bennett, J.S.5    DeGrado, W.F.6
  • 24
    • 2942700100 scopus 로고    scopus 로고
    • Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes
    • Li, R.H., Gorelik, R., Nanda, V., Law, P.B., Lear, J.D., DeGrado, W.F., and Bennett, J.S. 2004. Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes. J. Biol. Chem. 279: 26666–26673.
    • (2004) J. Biol. Chem. , vol.279 , pp. 26666-26673
    • Li, R.H.1    Gorelik, R.2    Nanda, V.3    Law, P.B.4    Lear, J.D.5    DeGrado, W.F.6    Bennett, J.S.7
  • 26
    • 33645020555 scopus 로고    scopus 로고
    • Two types of transmembrane homomeric interactions in the integrin receptor family are evolutionarily conserved
    • Lin, X., Tan, S.M., Law, S.K.A., and Torres, J. 2006. Two types of transmembrane homomeric interactions in the integrin receptor family are evolutionarily conserved. Proteins 63: 16–23.
    • (2006) Proteins , vol.63 , pp. 16-23
    • Lin, X.1    Tan, S.M.2    Law, S.K.A.3    Torres, J.4
  • 27
    • 0035805633 scopus 로고    scopus 로고
    • Association of the membrane proximal regions of the α and β subunit cytoplasmic domains constrains an integrin in the inactive state
    • Lu, C.F., Takagi, J., and Springer, T.A. 2001. Association of the membrane proximal regions of the α and β subunit cytoplasmic domains constrains an integrin in the inactive state. J. Biol. Chem. 276: 14642–14648.
    • (2001) J. Biol. Chem. , vol.276 , pp. 14642-14648
    • Lu, C.F.1    Takagi, J.2    Springer, T.A.3
  • 28
    • 16644396938 scopus 로고    scopus 로고
    • A specific interface between integrin transmembrane helices and affinity for ligand
    • Luo, B.H., Springer, T.A., and Takagi, J. 2004. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol. 2: 776–786.
    • (2004) PLoS Biol. , vol.2 , pp. 776-786
    • Luo, B.H.1    Springer, T.A.2    Takagi, J.3
  • 29
    • 14844346910 scopus 로고    scopus 로고
    • Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering
    • Luo, B.H., Carman, C.V., Takagi, J., and Springer, T.A. 2005. Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc. Natl. Acad. Sci. 102: 3679–3684.
    • (2005) Proc. Natl. Acad. Sci. , vol.102 , pp. 3679-3684
    • Luo, B.H.1    Carman, C.V.2    Takagi, J.3    Springer, T.A.4
  • 30
    • 0343092088 scopus 로고    scopus 로고
    • Orientation of the infrared transition moments for an α‐helix
    • Marsh, D., Muller, M., and Schmitt, F.J. 2000. Orientation of the infrared transition moments for an α‐helix. Biophys. J. 78: 2499–2510.
    • (2000) Biophys. J. , vol.78 , pp. 2499-2510
    • Marsh, D.1    Muller, M.2    Schmitt, F.J.3
  • 32
    • 0942276402 scopus 로고    scopus 로고
    • The interface between self‐assembling erythropoietin receptor transmembrane segments corresponds to a membrane‐spanning leucine zipper
    • Ruan, W., Becker, V., Klingmuller, U., and Langosch, D. 2004a. The interface between self‐assembling erythropoietin receptor transmembrane segments corresponds to a membrane‐spanning leucine zipper. J. Biol. Chem. 279: 3273–3279.
    • (2004) J. Biol. Chem. , vol.279 , pp. 3273-3279
    • Ruan, W.1    Becker, V.2    Klingmuller, U.3    Langosch, D.4
  • 33
    • 1642493917 scopus 로고    scopus 로고
    • The interface of a membrane‐spanning leucine zipper mapped by asparagine‐scanning mutagenesis
    • Ruan, W., Lindner, E., and Langosch, D. 2004b. The interface of a membrane‐spanning leucine zipper mapped by asparagine‐scanning mutagenesis. Protein Sci. 13: 555–559.
    • (2004) Protein Sci. , vol.13 , pp. 555-559
    • Ruan, W.1    Lindner, E.2    Langosch, D.3
  • 34
    • 0033514311 scopus 로고    scopus 로고
    • TOXCAT: A measure of transmembrane helix association in a biological membrane
    • Russ, W.P. and Engelman, D.M. 1999. TOXCAT: A measure of transmembrane helix association in a biological membrane. Proc. Natl. Acad. Sci. 96: 863–868.
    • (1999) Proc. Natl. Acad. Sci. , vol.96 , pp. 863-868
    • Russ, W.P.1    Engelman, D.M.2
  • 35
    • 0034711953 scopus 로고    scopus 로고
    • The GxxxG motif: A framework for transmembrane helix–helix association
    • Russ, W.P. and Engelman, D.M. 2000. The GxxxG motif: A framework for transmembrane helix–helix association. J. Mol. Biol. 296: 911–919.
    • (2000) J. Mol. Biol. , vol.296 , pp. 911-919
    • Russ, W.P.1    Engelman, D.M.2
  • 36
    • 22844432969 scopus 로고    scopus 로고
    • The identification of a minimal dimerization motif QXXS that enables homo‐ and hetero‐association of transmembrane helices in vivo
    • Sal‐Man, N., Gerber, D., and Shai, Y. 2005. The identification of a minimal dimerization motif QXXS that enables homo‐ and hetero‐association of transmembrane helices in vivo. J. Biol. Chem. 280: 27449–27457.
    • (2005) J. Biol. Chem. , vol.280 , pp. 27449-27457
    • Sal‐Man, N.1    Gerber, D.2    Shai, Y.3
  • 37
    • 0037474296 scopus 로고    scopus 로고
    • GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane
    • Schneider, D. and Engelman, D.M. 2003. GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane. J. Biol. Chem. 278: 3105–3111.
    • (2003) J. Biol. Chem. , vol.278 , pp. 3105-3111
    • Schneider, D.1    Engelman, D.M.2
  • 38
    • 1642396353 scopus 로고    scopus 로고
    • Involvement of transmembrane domain interactions in signal transduction by α/β integrins
    • Schneider, D. and Engelman, D.M. 2004. Involvement of transmembrane domain interactions in signal transduction by α/β integrins. J. Biol. Chem. 279: 9840–9846.
    • (2004) J. Biol. Chem. , vol.279 , pp. 9840-9846
    • Schneider, D.1    Engelman, D.M.2
  • 39
    • 0034711958 scopus 로고    scopus 로고
    • Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and in association with β‐branched residues at neighboring positions
    • Senes, A., Gerstein, M., and Engelman, D.M. 2000. Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and in association with β‐branched residues at neighboring positions. J. Mol. Biol. 296: 921–936.
    • (2000) J. Mol. Biol. , vol.296 , pp. 921-936
    • Senes, A.1    Gerstein, M.2    Engelman, D.M.3
  • 40
    • 0033167996 scopus 로고    scopus 로고
    • Are membrane proteins “inside‐out” proteins?
    • Stevens, T.J. and Arkin, I.T. 1999. Are membrane proteins “inside‐out” proteins? Proteins 36: 135–143.
    • (1999) Proteins , vol.36 , pp. 135-143
    • Stevens, T.J.1    Arkin, I.T.2
  • 41
    • 0034697895 scopus 로고    scopus 로고
    • Use of a new label, 13C=18O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data
    • Torres, J., Adams, P.D., and Arkin, I.T. 2000. Use of a new label, 13 C= 18 O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data. J. Mol. Biol. 300: 677–685.
    • (2000) J. Mol. Biol. , vol.300 , pp. 677-685
    • Torres, J.1    Adams, P.D.2    Arkin, I.T.3
  • 42
    • 0034752541 scopus 로고    scopus 로고
    • Site‐specific examination of secondary structure and orientation determination in membrane proteins: The peptidic 13C=18O group as a novel infrared probe
    • Torres, J., Kukol, A., Goodman, J.M., and Arkin, I.T. 2001. Site‐specific examination of secondary structure and orientation determination in membrane proteins: The peptidic 13 C= 18 O group as a novel infrared probe. Biopolymers 59: 396–401.
    • (2001) Biopolymers , vol.59 , pp. 396-401
    • Torres, J.1    Kukol, A.2    Goodman, J.M.3    Arkin, I.T.4
  • 43
    • 0036293994 scopus 로고    scopus 로고
    • Multiple site‐specific infrared dichroism of CD3‐z, a transmembrane helix bundle
    • Torres, J., Briggs, J.A., and Arkin, I.T. 2002. Multiple site‐specific infrared dichroism of CD3‐z, a transmembrane helix bundle. J. Mol. Biol. 316: 365–374.
    • (2002) J. Mol. Biol. , vol.316 , pp. 365-374
    • Torres, J.1    Briggs, J.A.2    Arkin, I.T.3
  • 44
    • 33746776201 scopus 로고    scopus 로고
    • Model of a putative pore: The pentameric α‐helical bundle of SARS coronavirus E protein in lipid bilayers
    • Torres, J., Parthasarathy, K., Lin, X., Saravanan, R., Kukol, A., and Liu, D.X. 2006. Model of a putative pore: The pentameric α‐helical bundle of SARS coronavirus E protein in lipid bilayers. Biophys. J. 91: 938–947.
    • (2006) Biophys. J. , vol.91 , pp. 938-947
    • Torres, J.1    Parthasarathy, K.2    Lin, X.3    Saravanan, R.4    Kukol, A.5    Liu, D.X.6
  • 45
    • 0037389585 scopus 로고    scopus 로고
    • An unraveling tale of how integrins are activated from within
    • Travis, M.A., Humphries, J.D., and Humphries, M.J. 2003. An unraveling tale of how integrins are activated from within. Trends Pharmacol. Sci. 24: 192–197.
    • (2003) Trends Pharmacol. Sci. , vol.24 , pp. 192-197
    • Travis, M.A.1    Humphries, J.D.2    Humphries, M.J.3
  • 46
    • 0036683057 scopus 로고    scopus 로고
    • Role of integrins in regulating epidermal adhesion, growth and differentiation
    • Watt, F.M. 2002. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21: 3919–3926.
    • (2002) EMBO J. , vol.21 , pp. 3919-3926
    • Watt, F.M.1
  • 47
    • 0037561192 scopus 로고    scopus 로고
    • Integrin‐dependent pathologies
    • Wehrle‐Haller, B. and Imhof, B.A. 2003. Integrin‐dependent pathologies. J. Pathol. 200: 481–487.
    • (2003) J. Pathol. , vol.200 , pp. 481-487
    • Wehrle‐Haller, B.1    Imhof, B.A.2
  • 50
    • 0035956884 scopus 로고    scopus 로고
    • Polar residues drive association of polyleucine transmembrane helices
    • Zhou, F.X., Merianos, H.J., Brunger, A.T., and Engelman, D.M. 2001. Polar residues drive association of polyleucine transmembrane helices. Proc. Natl. Acad. Sci. 98: 2250–2255.
    • (2001) Proc. Natl. Acad. Sci. , vol.98 , pp. 2250-2255
    • Zhou, F.X.1    Merianos, H.J.2    Brunger, A.T.3    Engelman, D.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.