메뉴 건너뛰기




Volumn 22, Issue 4, 2008, Pages 309-330

Unsupervised anomaly detection in large databases using bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPUTATION THEORY; INFORMATION ANALYSIS; STATISTICAL METHODS;

EID: 42949121951     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/08839510801972801     Document Type: Article
Times cited : (20)

References (37)
  • 1
    • 0028401306 scopus 로고
    • Case-based reasoning: Foundational issues, methodological variations, and system approaches
    • Aamodt, A. and E. Plaza. 1994. Case-based reasoning: Foundational issues, methodological variations, and system approaches. Artificial Intelligence Communications 7(1):39-59.
    • (1994) Artificial Intelligence Communications , vol.7 , Issue.1 , pp. 39-59
    • Aamodt, A.1    Plaza, E.2
  • 4
    • 0003964874 scopus 로고
    • Next-generation intrusion detection expert system (NIDES): A summary
    • Technical Report SRI-CSL-95-07, Computer Science Laboratory, Menlo Park, CA: SRI International
    • Anderson, D., T. Frivold, and A. Valdes. 1995. Next-generation intrusion detection expert system (NIDES): A summary. Technical Report SRI-CSL-95-07, Computer Science Laboratory, Menlo Park, CA: SRI International.
    • (1995)
    • Anderson, D.1    Frivold, T.2    Valdes, A.3
  • 5
    • 0003707174 scopus 로고    scopus 로고
    • Scaling EM (expectation maximization) clustering to large databases
    • Technical Report MSR-TR-98-35, Redmond, WA: Microsoft Research
    • Bradley, P. S., U. Fayyad, and C. Reina. 1998. Scaling EM (expectation maximization) clustering to large databases. Technical Report MSR-TR-98-35, Redmond, WA: Microsoft Research.
    • (1998)
    • Bradley, P.S.1    Fayyad, U.2    Reina, C.3
  • 6
    • 0001019707 scopus 로고    scopus 로고
    • Learning bayesian networks is NP-complete
    • eds. D. H. Fisher and H.-J. Lenz, pp, New York, NY: Springer-Verlag
    • Chickering, D. M. 1996a. Learning bayesian networks is NP-complete. In: Learning from Data: Artificial Intelligence and Statistics V, eds. D. H. Fisher and H.-J. Lenz, pp. 121-130, New York, NY: Springer-Verlag.
    • (1996) Learning from Data: Artificial Intelligence and Statistics V , pp. 121-130
    • Chickering, D.M.1
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F. and E. Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning9(4):309- 347.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 12
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in bayesian networks
    • Friedman, N. and D. Koller. 2003. Being Bayesian about network structure: A Bayesian approach to structure discovery in bayesian networks. Machine Learning 50(1-2):95-125.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 14
    • 0000868434 scopus 로고    scopus 로고
    • Bayesian networks for knowledge discovery
    • eds. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, pp, Cambridge, MA: MIT Press
    • Heckerman, D. 1996. Bayesian networks for knowledge discovery. In: Advances in Knowledge Discovery and Data Mining, eds. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, pp. 273-305. Cambridge, MA: MIT Press.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 273-305
    • Heckerman, D.1
  • 15
    • 7544223741 scopus 로고    scopus 로고
    • Hodge, V. J. and J. Austin, 2004. A. survey of outlier detection methodologies. Artificial Intelligence Review 22(2):85-126.
    • Hodge, V. J. and J. Austin, 2004. A. survey of outlier detection methodologies. Artificial Intelligence Review 22(2):85-126.
  • 24
    • 0038721417 scopus 로고    scopus 로고
    • Pattern recognition in the automatic inspection of aluminium castings
    • Mery, D., R. R. da Silva, L. P. Caloba, and J. M. Rebello. 2003. Pattern recognition in the automatic inspection of aluminium castings. Insight 45(7):431-439.
    • (2003) Insight , vol.45 , Issue.7 , pp. 431-439
    • Mery, D.1    da Silva, R.R.2    Caloba, L.P.3    Rebello, J.M.4
  • 27
    • 1942452317 scopus 로고    scopus 로고
    • Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
    • Menlo Park, CA: AAAI Press, pp
    • Moore, A. and W.-K. Wong. 2003. Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In: Proceedings of 20th International, Conference on Machine, Learning ICML, Menlo Park, CA: AAAI Press, pp. 552-559.
    • (2003) Proceedings of 20th International, Conference on Machine, Learning ICML , pp. 552-559
    • Moore, A.1    Wong, W.-K.2
  • 30
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • Parsons, L., E. Haque, and H. Liu. 2004. Subspace clustering for high dimensional data: A review. ACM SIGKDD Explorations Newsletter 6(1):90-105.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 34
    • 33847355183 scopus 로고    scopus 로고
    • An accelerated algorithm for density estimation in large databases using Gaussian mixtures
    • Soto, A., F. Zavala, and A. Araneda. 2007. An accelerated algorithm for density estimation in large databases using Gaussian mixtures. Cybernetics and Systems 38(2):123-139.
    • (2007) Cybernetics and Systems , vol.38 , Issue.2 , pp. 123-139
    • Soto, A.1    Zavala, F.2    Araneda, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.