메뉴 건너뛰기




Volumn 38, Issue 2, 2007, Pages 123-139

An accelerated algorithm for density estimation in large databases using Gaussian mixtures

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA STORAGE EQUIPMENT; OPTIMIZATION; PARAMETER ESTIMATION; PROBLEM SOLVING;

EID: 33847355183     PISSN: 01969722     EISSN: 10876553     Source Type: Journal    
DOI: 10.1080/01969720601138928     Document Type: Article
Times cited : (4)

References (20)
  • 1
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley, J. L. 1975. Multidimensional binary search trees used for associative searching. Communication of the ACM, 18:509-517.
    • (1975) Communication of the ACM , vol.18 , pp. 509-517
    • Bentley, J.L.1
  • 2
    • 0003707174 scopus 로고    scopus 로고
    • Scaling EM (expectation maximization) clustering to large databases
    • Technical Report MSR-TR-98-35, Microsoft Research
    • Bradley, P., U. Fayyad, and C. Reina. 1998. Scaling EM (expectation maximization) clustering to large databases. Technical Report MSR-TR-98-35, Microsoft Research.
    • (1998)
    • Bradley, P.1    Fayyad, U.2    Reina, C.3
  • 5
    • 84899023111 scopus 로고    scopus 로고
    • Learning from infinite data in finite time
    • edited by T. G Dietterich, S. Becker, and Z. Ghahramani. Cambridge, MA: MIT Press
    • Domingos, P. and G. Hulten. 2002. Learning from infinite data in finite time. In Advances in neural information processing systems 14, edited by T. G Dietterich, S. Becker, and Z. Ghahramani. Cambridge, MA: MIT Press.
    • (2002) Advances in neural information processing systems 14
    • Domingos, P.1    Hulten, G.2
  • 7
    • 84898949000 scopus 로고    scopus 로고
    • Learning the k in k-means
    • edited by S. Thrun, L. Saul, and B. Schölkopf. Cambridge, MA: MIT Press
    • Hamerly, G. and C. Elkan. 2004. Learning the k in k-means. In Advances in neural information processing systems 16, edited by S. Thrun, L. Saul, and B. Schölkopf. Cambridge, MA: MIT Press.
    • (2004) Advances in neural information processing systems 16
    • Hamerly, G.1    Elkan, C.2
  • 8
    • 33845291376 scopus 로고    scopus 로고
    • Investigation on several model selection criteria for determining the number of cluster
    • Hu, X. and L. Xu. 2004. Investigation on several model selection criteria for determining the number of cluster. Neural Information Processing - Letters and Reviews, 4(1): 1-10.
    • (2004) Neural Information Processing - Letters and Reviews , vol.4 , Issue.1 , pp. 1-10
    • Hu, X.1    Xu, L.2
  • 10
    • 84899029127 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution KD-trees
    • edited by M. Kearns and D. Cohn. San Francisco, CA: Morgan Kaufman, pp
    • Moore, A. 1999. Very fast EM-based mixture model clustering using multiresolution KD-trees. In Advances in neural information processing systems, edited by M. Kearns and D. Cohn. San Francisco, CA: Morgan Kaufman, pp. 543-549.
    • (1999) Advances in neural information processing systems , pp. 543-549
    • Moore, A.1
  • 11
    • 1942419246 scopus 로고    scopus 로고
    • The anchors hierarchy: Using the triangle inequality to survive high-dimensional data
    • edited by C. Boutilier and M. Goldszmidt. San Francisco, CA: Morgan Kaufman, pp
    • Moore, A. W. 2000. The anchors hierarchy: Using the triangle inequality to survive high-dimensional data. In Proceedings of the 16th conference in uncertainty in artificial intelligence, edited by C. Boutilier and M. Goldszmidt. San Francisco, CA: Morgan Kaufman, pp. 397-405.
    • (2000) Proceedings of the 16th conference in uncertainty in artificial intelligence , pp. 397-405
    • Moore, A.W.1
  • 12
    • 33847384876 scopus 로고    scopus 로고
    • Neal, R. and G. Hinton. 1998. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, edited by M. Jordan. Dordetch, The Netherlands: Kluwer Academic Publishers, pp. 355-368.
    • Neal, R. and G. Hinton. 1998. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, edited by M. Jordan. Dordetch, The Netherlands: Kluwer Academic Publishers, pp. 355-368.
  • 13
    • 0013111818 scopus 로고
    • Five balltree construction algorithms
    • Technical Report TR-89-063, International Computer Science Institute
    • Omohundro, S. M. 1989. Five balltree construction algorithms. Technical Report TR-89-063, International Computer Science Institute.
    • (1989)
    • Omohundro, S.M.1
  • 14
    • 0003241739 scopus 로고
    • Bumptrees for efficient function, constraint, and classification learning
    • edited by R. L. Lippmann, J. E. Moody, and D. S. Touretzky. Denver, Colorado: Morgan Kauffmann, pp
    • Omohundro, S. M. 1991. Bumptrees for efficient function, constraint, and classification learning. In Advances in neural information processing systems 3, Proc. Of the third NIPS Conference, edited by R. L. Lippmann, J. E. Moody, and D. S. Touretzky. Denver, Colorado: Morgan Kauffmann, pp. 693-699.
    • (1991) Advances in neural information processing systems 3, Proc. Of the third NIPS Conference , pp. 693-699
    • Omohundro, S.M.1
  • 15
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending k-means with efficient estimation of the number of clusters
    • edited by P. Langley. San Francisco, CA: Morgan Kaufmann, pp
    • Pelleg, D. and A. Moore. 2000. X-means: Extending k-means with efficient estimation of the number of clusters. In Proceedings of the seventeenth nternational conference on machine learning, edited by P. Langley. San Francisco, CA: Morgan Kaufmann, pp. 727-734.
    • (2000) Proceedings of the seventeenth nternational conference on machine learning , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 16
    • 33846045247 scopus 로고
    • Three approaches to probability model selection
    • edited by R. L. de Mántaras and D. Poole. San Francisco, CA: Morgan Kaufmann, pp
    • Poland, W. B. and R. D. Shachter. 1994. Three approaches to probability model selection. In Uncertainty in artificial intelligence: Proceedings of the tenth conference, edited by R. L. de Mántaras and D. Poole. San Francisco, CA: Morgan Kaufmann, pp. 478-483.
    • (1994) Uncertainty in artificial intelligence: Proceedings of the tenth conference , pp. 478-483
    • Poland, W.B.1    Shachter, R.D.2
  • 17
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. 1978. Modeling by shortest data description. Automatica, 14: 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 18
    • 0038205852 scopus 로고    scopus 로고
    • Repairing faulty mixture models using density estimation
    • edited by C. E. Brodley and A. P. Danyluk. San Francisco, CA: Morgan Kaufmann pp
    • Sand. P. and A. Moore. 2001. Repairing faulty mixture models using density estimation. In International conference on machine learning, edited by C. E. Brodley and A. P. Danyluk. San Francisco, CA: Morgan Kaufmann pp. 457-464.
    • (2001) International conference on machine learning , pp. 457-464
    • Sand, P.1    Moore, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.