-
1
-
-
0016557674
-
Multidimensional binary search trees used for associative searching
-
Bentley, J. L. 1975. Multidimensional binary search trees used for associative searching. Communication of the ACM, 18:509-517.
-
(1975)
Communication of the ACM
, vol.18
, pp. 509-517
-
-
Bentley, J.L.1
-
2
-
-
0003707174
-
Scaling EM (expectation maximization) clustering to large databases
-
Technical Report MSR-TR-98-35, Microsoft Research
-
Bradley, P., U. Fayyad, and C. Reina. 1998. Scaling EM (expectation maximization) clustering to large databases. Technical Report MSR-TR-98-35, Microsoft Research.
-
(1998)
-
-
Bradley, P.1
Fayyad, U.2
Reina, C.3
-
3
-
-
0004116989
-
-
Cambridge, MA: MIT Press
-
Cormen, T., C. Leiserson, R. Rivest, and C. Stein. 1990. Introduction to algorithms. Cambridge, MA: MIT Press.
-
(1990)
Introduction to algorithms
-
-
Cormen, T.1
Leiserson, C.2
Rivest, R.3
Stein, C.4
-
5
-
-
84899023111
-
Learning from infinite data in finite time
-
edited by T. G Dietterich, S. Becker, and Z. Ghahramani. Cambridge, MA: MIT Press
-
Domingos, P. and G. Hulten. 2002. Learning from infinite data in finite time. In Advances in neural information processing systems 14, edited by T. G Dietterich, S. Becker, and Z. Ghahramani. Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems 14
-
-
Domingos, P.1
Hulten, G.2
-
7
-
-
84898949000
-
Learning the k in k-means
-
edited by S. Thrun, L. Saul, and B. Schölkopf. Cambridge, MA: MIT Press
-
Hamerly, G. and C. Elkan. 2004. Learning the k in k-means. In Advances in neural information processing systems 16, edited by S. Thrun, L. Saul, and B. Schölkopf. Cambridge, MA: MIT Press.
-
(2004)
Advances in neural information processing systems 16
-
-
Hamerly, G.1
Elkan, C.2
-
8
-
-
33845291376
-
Investigation on several model selection criteria for determining the number of cluster
-
Hu, X. and L. Xu. 2004. Investigation on several model selection criteria for determining the number of cluster. Neural Information Processing - Letters and Reviews, 4(1): 1-10.
-
(2004)
Neural Information Processing - Letters and Reviews
, vol.4
, Issue.1
, pp. 1-10
-
-
Hu, X.1
Xu, L.2
-
10
-
-
84899029127
-
Very fast EM-based mixture model clustering using multiresolution KD-trees
-
edited by M. Kearns and D. Cohn. San Francisco, CA: Morgan Kaufman, pp
-
Moore, A. 1999. Very fast EM-based mixture model clustering using multiresolution KD-trees. In Advances in neural information processing systems, edited by M. Kearns and D. Cohn. San Francisco, CA: Morgan Kaufman, pp. 543-549.
-
(1999)
Advances in neural information processing systems
, pp. 543-549
-
-
Moore, A.1
-
11
-
-
1942419246
-
The anchors hierarchy: Using the triangle inequality to survive high-dimensional data
-
edited by C. Boutilier and M. Goldszmidt. San Francisco, CA: Morgan Kaufman, pp
-
Moore, A. W. 2000. The anchors hierarchy: Using the triangle inequality to survive high-dimensional data. In Proceedings of the 16th conference in uncertainty in artificial intelligence, edited by C. Boutilier and M. Goldszmidt. San Francisco, CA: Morgan Kaufman, pp. 397-405.
-
(2000)
Proceedings of the 16th conference in uncertainty in artificial intelligence
, pp. 397-405
-
-
Moore, A.W.1
-
12
-
-
33847384876
-
-
Neal, R. and G. Hinton. 1998. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, edited by M. Jordan. Dordetch, The Netherlands: Kluwer Academic Publishers, pp. 355-368.
-
Neal, R. and G. Hinton. 1998. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, edited by M. Jordan. Dordetch, The Netherlands: Kluwer Academic Publishers, pp. 355-368.
-
-
-
-
13
-
-
0013111818
-
Five balltree construction algorithms
-
Technical Report TR-89-063, International Computer Science Institute
-
Omohundro, S. M. 1989. Five balltree construction algorithms. Technical Report TR-89-063, International Computer Science Institute.
-
(1989)
-
-
Omohundro, S.M.1
-
14
-
-
0003241739
-
Bumptrees for efficient function, constraint, and classification learning
-
edited by R. L. Lippmann, J. E. Moody, and D. S. Touretzky. Denver, Colorado: Morgan Kauffmann, pp
-
Omohundro, S. M. 1991. Bumptrees for efficient function, constraint, and classification learning. In Advances in neural information processing systems 3, Proc. Of the third NIPS Conference, edited by R. L. Lippmann, J. E. Moody, and D. S. Touretzky. Denver, Colorado: Morgan Kauffmann, pp. 693-699.
-
(1991)
Advances in neural information processing systems 3, Proc. Of the third NIPS Conference
, pp. 693-699
-
-
Omohundro, S.M.1
-
15
-
-
0001820920
-
X-means: Extending k-means with efficient estimation of the number of clusters
-
edited by P. Langley. San Francisco, CA: Morgan Kaufmann, pp
-
Pelleg, D. and A. Moore. 2000. X-means: Extending k-means with efficient estimation of the number of clusters. In Proceedings of the seventeenth nternational conference on machine learning, edited by P. Langley. San Francisco, CA: Morgan Kaufmann, pp. 727-734.
-
(2000)
Proceedings of the seventeenth nternational conference on machine learning
, pp. 727-734
-
-
Pelleg, D.1
Moore, A.2
-
16
-
-
33846045247
-
Three approaches to probability model selection
-
edited by R. L. de Mántaras and D. Poole. San Francisco, CA: Morgan Kaufmann, pp
-
Poland, W. B. and R. D. Shachter. 1994. Three approaches to probability model selection. In Uncertainty in artificial intelligence: Proceedings of the tenth conference, edited by R. L. de Mántaras and D. Poole. San Francisco, CA: Morgan Kaufmann, pp. 478-483.
-
(1994)
Uncertainty in artificial intelligence: Proceedings of the tenth conference
, pp. 478-483
-
-
Poland, W.B.1
Shachter, R.D.2
-
17
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen, J. 1978. Modeling by shortest data description. Automatica, 14: 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
18
-
-
0038205852
-
Repairing faulty mixture models using density estimation
-
edited by C. E. Brodley and A. P. Danyluk. San Francisco, CA: Morgan Kaufmann pp
-
Sand. P. and A. Moore. 2001. Repairing faulty mixture models using density estimation. In International conference on machine learning, edited by C. E. Brodley and A. P. Danyluk. San Francisco, CA: Morgan Kaufmann pp. 457-464.
-
(2001)
International conference on machine learning
, pp. 457-464
-
-
Sand, P.1
Moore, A.2
-
20
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
edited by H. V. Jagadish and I. S. Mumick. New York, NY: ACM Press, pp
-
Zhang, T., R. Ramakrishnan, and M. Livny. 1996. BIRCH: An efficient data clustering method for very large databases. In SIGMOD '96: Proceedings of the 1996 Acm SIGMOD international conference on management of data, edited by H. V. Jagadish and I. S. Mumick. New York, NY: ACM Press, pp. 103-114.
-
(1996)
SIGMOD '96: Proceedings of the 1996 Acm SIGMOD international conference on management of data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|