-
1
-
-
0032754473
-
-
R. Apweiler, H. Hermjakob, N. Sharon, Biochim. Biophys. Acta Gen. Subj. 1999, 1473, 4-8.
-
(1999)
Biochim. Biophys. Acta Gen. Subj
, vol.1473
, pp. 4-8
-
-
Apweiler, R.1
Hermjakob, H.2
Sharon, N.3
-
3
-
-
0001094662
-
-
b) R. A. Dwek, Chem. Rev. 1996, 96, 683-720;
-
(1996)
Chem. Rev
, vol.96
, pp. 683-720
-
-
Dwek, R.A.1
-
4
-
-
0036462604
-
-
c) B. G. Davis, Chem. Rev. 2002, 102, 579-601.
-
(2002)
Chem. Rev
, vol.102
, pp. 579-601
-
-
Davis, B.G.1
-
6
-
-
1342332089
-
-
K. Nishiwaki, Y. Kubota, Y. Chigira, S. K. Roy, M. Suzuki, M. Schvarzstein, Y. Jigami, N. Hisamoto, K. Matsumoto, Nat. Cell Biol. 2004, 6, 31-37.
-
(2004)
Nat. Cell Biol
, vol.6
, pp. 31-37
-
-
Nishiwaki, K.1
Kubota, Y.2
Chigira, Y.3
Roy, S.K.4
Suzuki, M.5
Schvarzstein, M.6
Jigami, Y.7
Hisamoto, N.8
Matsumoto, K.9
-
7
-
-
0035937424
-
-
J. B. Lowe, Cell 2001, 104, 809-812.
-
(2001)
Cell
, vol.104
, pp. 809-812
-
-
Lowe, J.B.1
-
8
-
-
18444387419
-
-
a) C. Neusuß, U. Demelbauer, M. Pelzing, Electrophoresis 2005, 26, 1442-1450;
-
(2005)
Electrophoresis
, vol.26
, pp. 1442-1450
-
-
Neusuß, C.1
Demelbauer, U.2
Pelzing, M.3
-
9
-
-
0035852985
-
-
b) J. F. Nemeth, G. P. Hochensang, Jr., L. J. Marnett, R. M. Caprioli, Biochemistry 2001, 40, 3109-3116.
-
(2001)
Biochemistry
, vol.40
, pp. 3109-3116
-
-
Nemeth, J.F.1
Hochensang Jr., G.P.2
Marnett, L.J.3
Caprioli, R.M.4
-
12
-
-
0015209563
-
-
b) J. B. Weiss, C. J. Löte, H. Bobinski, Nature New Biol. 1971, 234, 25-26.
-
(1971)
Nature New Biol
, vol.234
, pp. 25-26
-
-
Weiss, J.B.1
Löte, C.J.2
Bobinski, H.3
-
16
-
-
33644641629
-
-
D. Crich, V. Krishnamurthy, K. T. Hutton, J. Am. Chem. Soc. 2006, 128, 2544-2545.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 2544-2545
-
-
Crich, D.1
Krishnamurthy, V.2
Hutton, K.T.3
-
17
-
-
53549117798
-
-
Recently, a biosynthetic route to a dehydroalanine-containing protein that serves as a Michael acceptor for thiol nucleophiles, including mannosyl thiol, was described: J. Wang, S. M. Schiller, P. G. Schultz, Angew. Chem. 2007, 119, 6973-6975;
-
Recently, a biosynthetic route to a dehydroalanine-containing protein that serves as a Michael acceptor for thiol nucleophiles, including mannosyl thiol, was described: J. Wang, S. M. Schiller, P. G. Schultz, Angew. Chem. 2007, 119, 6973-6975;
-
-
-
-
18
-
-
34548764429
-
-
Angew. Chem. Int. Ed. 2007, 46, 6849-6851.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 6849-6851
-
-
-
19
-
-
4243620067
-
-
B. Capon, Chem. Rev. 1969, 69, 407-498.
-
(1969)
Chem. Rev
, vol.69
, pp. 407-498
-
-
Capon, B.1
-
20
-
-
0030992604
-
-
Z. J. Witczak, R. Chhabra, H. Chen, X. Q. Xie, Carbohydr. Res. 1997, 301, 167-175.
-
(1997)
Carbohydr. Res
, vol.301
, pp. 167-175
-
-
Witczak, Z.J.1
Chhabra, R.2
Chen, H.3
Xie, X.Q.4
-
21
-
-
0034000336
-
-
B. G. Davis, M. A. T. Maughan, M. P. Green, A. Ullman, J. B. Jones, Tetrahedron: Asymmetry 2000, 11, 245-262.
-
(2000)
Tetrahedron: Asymmetry
, vol.11
, pp. 245-262
-
-
Davis, B.G.1
Maughan, M.A.T.2
Green, M.P.3
Ullman, A.4
Jones, J.B.5
-
22
-
-
0344982065
-
-
D. P. Gamblin, P. Garnier, S. J. Ward, N. J. Oldham, A. J. Fairbanks, B. G. Davis, Org. Biomol. Chem. 2003, 1, 3642-3644.
-
(2003)
Org. Biomol. Chem
, vol.1
, pp. 3642-3644
-
-
Gamblin, D.P.1
Garnier, P.2
Ward, S.J.3
Oldham, N.J.4
Fairbanks, A.J.5
Davis, B.G.6
-
23
-
-
33746274049
-
-
D. P. Gamblin, P. Garnier, S. van Kasteren, N. J. Oldham, A. J. Fairbanks, B. G. Davis, Angew. Chem. 2004, 116, 846-851;
-
(2004)
Angew. Chem
, vol.116
, pp. 846-851
-
-
Gamblin, D.P.1
Garnier, P.2
van Kasteren, S.3
Oldham, N.J.4
Fairbanks, A.J.5
Davis, B.G.6
-
24
-
-
4544387352
-
-
Angew. Chem. Int. Ed. 2004, 43, 828-833.
-
(2004)
Angew. Chem. Int. Ed
, vol.43
, pp. 828-833
-
-
-
25
-
-
53549122805
-
-
G. J. L. Bernardes, D. P. Gamblin, B. G. Davis, Angew. Chem. 2006, 118, 4111-4115;
-
(2006)
Angew. Chem
, vol.118
, pp. 4111-4115
-
-
Bernardes, G.J.L.1
Gamblin, D.P.2
Davis, B.G.3
-
26
-
-
33746294817
-
-
Angew. Chem. Int. Ed. 2006, 45, 4007-4011.
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 4007-4011
-
-
-
27
-
-
0000309750
-
-
a) D. N. Harpp, J. G. Gleason, J. P. Snyder, J. Am. Chem. Soc. 1968, 90, 4181-4182;
-
(1968)
J. Am. Chem. Soc
, vol.90
, pp. 4181-4182
-
-
Harpp, D.N.1
Gleason, J.G.2
Snyder, J.P.3
-
30
-
-
53549100545
-
-
d) A. W. P. Jarvie, C. G. Moore, D. Skelton, J. Polym. Sci. Part A 1971, 9, 3105-3114.
-
(1971)
J. Polym. Sci. Part A
, vol.9
, pp. 3105-3114
-
-
Jarvie, A.W.P.1
Moore, C.G.2
Skelton, D.3
-
31
-
-
53549134052
-
-
The electron-withdrawing nitro group was necessary for the formation of the product in useful yields. When unsubstituted thiophenol was used instead of p-nitrothiophenol as a component of the disulfide substrate, the thioglycoside was obtained in low yield, and a large amount of the anomeric thiol was formed see the Supporting Information
-
The electron-withdrawing nitro group was necessary for the formation of the product in useful yields. When unsubstituted thiophenol was used instead of p-nitrothiophenol as a component of the disulfide substrate, the thioglycoside was obtained in low yield, and a large amount of the anomeric thiol was formed (see the Supporting Information).
-
-
-
-
32
-
-
34548155188
-
-
A disulfide contraction of this type was observed recently for a disulfide derivative of a protected cysteine residue: D. Crich, V. Krishnamurthy, F. Brebion, M. Karatholuvhu, V. Subramanian, K. T. Hutton, J. Am. Chem. Soc. 2007, 129, 10282-10294
-
A disulfide contraction of this type was observed recently for a disulfide derivative of a protected cysteine residue: D. Crich, V. Krishnamurthy, F. Brebion, M. Karatholuvhu, V. Subramanian, K. T. Hutton, J. Am. Chem. Soc. 2007, 129, 10282-10294.
-
-
-
-
33
-
-
53549114569
-
-
β.
-
β.
-
-
-
-
34
-
-
53549098620
-
-
Similar yields were observed with hexaethylphosphorus triamide; however, the purification of the product was more cumbersome than when HMPTwas used
-
Similar yields were observed with hexaethylphosphorus triamide; however, the purification of the product was more cumbersome than when HMPTwas used.
-
-
-
-
35
-
-
53549122310
-
-
Crossover experiments on differentially protected glycosyl cysteine derivatives under the optimized reaction conditions revealed that glycosyl exchange takes place and thus lent support for a dehydroalanine intermediate. 1H NMR spectroscopic analysis allowed the direct observation of dehydroalanine formation and consumption see the Supporting Information for details, The low diastereoselectivity in the subsequent conjugate addition is consistent with that previously reported in reference [10
-
1H NMR spectroscopic analysis allowed the direct observation of dehydroalanine formation and consumption (see the Supporting Information for details). The low diastereoselectivity in the subsequent conjugate addition is consistent with that previously reported in reference [10].
-
-
-
-
36
-
-
53549120024
-
-
Other a centers in the peptide did not undergo epimerization, which suggests that the observed epimerization at the a center of cysteine derives largely, if not exclusively, from dehydroalanine formation and not from deprotonation by HMPT
-
Other a centers in the peptide did not undergo epimerization, which suggests that the observed epimerization at the a center of cysteine derives largely, if not exclusively, from dehydroalanine formation and not from deprotonation by HMPT.
-
-
-
-
37
-
-
53549121485
-
-
The diastereoselectivity of the reaction in Figure 1 will depend on the stereochemical environment of C156. Conjugate addition to dehydroalanine- containing peptides has been shown to be largely sequence dependent, with a diastereomeric ratio of >85:15 estimated for certain scaffolds: a) Ref. [10]; b U. Schmidt, E. Nhler, Angew. Chem. 1976, 88, 54 ;
-
The diastereoselectivity of the reaction in Figure 1 will depend on the stereochemical environment of C156. Conjugate addition to dehydroalanine- containing peptides has been shown to be largely sequence dependent, with a diastereomeric ratio of >85:15 estimated for certain scaffolds: a) Ref. [10]; b) U. Schmidt, E. Nhler, Angew. Chem. 1976, 88, 54 ;
-
-
-
-
39
-
-
53549086742
-
-
Modification at C156 was corroborated by trypsin digestion and MALDI MS analysis (see the Supporting Information).
-
Modification at C156 was corroborated by trypsin digestion and MALDI MS analysis (see the Supporting Information).
-
-
-
|