-
2
-
-
0039266262
-
-
For initial measurements of the Casimir effect, see PHYSAG 0031-8914 10.1016/S0031-8914(58)80090-7
-
For initial measurements of the Casimir effect, see M. J. Sparnaay, Physica (Utrecht) PHYSAG 0031-8914 10.1016/S0031-8914(58)80090-7 24, 751 (1958);
-
(1958)
Physica (Utrecht)
, vol.24
, pp. 751
-
-
Sparnaay, M.J.1
-
4
-
-
20544475443
-
-
RSINAK 0034-6748 10.1063/1.1927327
-
K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. RSINAK 0034-6748 10.1063/1.1927327 76, 061101 (2005).
-
(2005)
Rev. Sci. Instrum.
, vol.76
, pp. 061101
-
-
Ekinci, K.L.1
Roukes, M.L.2
-
8
-
-
85046490787
-
-
CSFOEH 0960-0779 10.1016/j.chaos.2004.07.007
-
Wen-Hui Lin and Ya-Pu Zhao, Chaos, Solitons Fractals CSFOEH 0960-0779 10.1016/j.chaos.2004.07.007 23, 1777 (2005);
-
(2005)
Chaos, Solitons Fractals
, vol.23
, pp. 1777
-
-
Lin, W.1
Zhao, Y.2
-
9
-
-
29744449458
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.72.115426
-
G. Palasantzas and J. Th. M. De Hosson, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.115426 72, 115426 (2005);
-
(2005)
Phys. Rev. B
, vol.72
, pp. 115426
-
-
Palasantzas, G.1
De Hosson, J.Th.M.2
-
10
-
-
29744462932
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.72.121409
-
G. Palasantzas and J. Th. M. De Hosson, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.121409 72, 121409 (R) (2005);
-
(2005)
Phys. Rev. B
, vol.72
, pp. 121409
-
-
Palasantzas, G.1
De Hosson, J.Th.M.2
-
11
-
-
33645136754
-
-
SUSCAS 0039-6028 10.1016/j.susc.2006.01.035
-
G. Palasantzas and J. Th. M. De Hosson, Surf. Sci. SUSCAS 0039-6028 10.1016/j.susc.2006.01.035 600, 1450 (2006).
-
(2006)
Surf. Sci.
, vol.600
, pp. 1450
-
-
Palasantzas, G.1
De Hosson, J.Th.M.2
-
12
-
-
33750268960
-
-
NJOPFM 1367-2630 10.1088/1367-2630/8/10/237
-
R. Onofrio, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/8/10/237 8, 237 (2006).
-
(2006)
New J. Phys.
, vol.8
, pp. 237
-
-
Onofrio, R.1
-
13
-
-
6244231783
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.78.5
-
S. K. Lamoreaux, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 78.5 78, 5 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 5
-
-
Lamoreaux, S.K.1
-
14
-
-
3543036231
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.62.052109
-
B. W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.62.052109 62, 052109 (2000);
-
(2000)
Phys. Rev. a
, vol.62
, pp. 052109
-
-
Harris, B.W.1
Chen, F.2
Mohideen, U.3
-
16
-
-
1942443921
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.69.022117
-
F. Chen, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.69.022117 69, 022117 (2004);
-
(2004)
Phys. Rev. a
, vol.69
, pp. 022117
-
-
Chen, F.1
Klimchitskaya, G.L.2
Mohideen, U.3
Mostepanenko, V.M.4
-
17
-
-
33747163559
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.74.022103
-
F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.74.022103 74, 022103 (2006).
-
(2006)
Phys. Rev. a
, vol.74
, pp. 022103
-
-
Chen, F.1
Mohideen, U.2
Klimchitskaya, G.L.3
Mostepanenko, V.M.4
-
18
-
-
0035831260
-
-
SCIEAS 0036-8075 10.1126/science.1057984
-
H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, Science SCIEAS 0036-8075 10.1126/science.1057984 291, 1941 (2001);
-
(2001)
Science
, vol.291
, pp. 1941
-
-
Chan, H.B.1
Aksyuk, V.A.2
Kleiman, R.N.3
Bishop, D.J.4
Capasso, F.5
-
19
-
-
1642453941
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.68.116003
-
R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, D. López, and V. M. Mostepanenko, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.68.116003 68, 116003 (2003);
-
(2003)
Phys. Rev. D
, vol.68
, pp. 116003
-
-
Decca, R.S.1
Fischbach, E.2
Klimchitskaya, G.L.3
Krause, D.E.4
López, D.5
Mostepanenko, V.M.6
-
20
-
-
20644458531
-
-
APNYA6 0003-4916 10.1016/j.aop.2005.03.007
-
R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepanenko, Ann. Phys. (N.Y.) APNYA6 0003-4916 10.1016/j.aop.2005.03.007 318, 37 (2005).
-
(2005)
Ann. Phys. (N.Y.)
, vol.318
, pp. 37
-
-
Decca, R.S.1
López, D.2
Fischbach, E.3
Klimchitskaya, G.L.4
Krause, D.E.5
Mostepanenko, V.M.6
-
21
-
-
4143109263
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.62.062104
-
T. Ederth, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.62.062104 62, 062104 (2000).
-
(2000)
Phys. Rev. a
, vol.62
, pp. 062104
-
-
Ederth, T.1
-
22
-
-
0037185494
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.88.041804
-
G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.88.041804 88, 041804 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 041804
-
-
Bressi, G.1
Carugno, G.2
Onofrio, R.3
Ruoso, G.4
-
23
-
-
33746648136
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.74.045002
-
H. Gies and K. Klingmuller, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.74.045002 74, 045002 (2006).
-
(2006)
Phys. Rev. D
, vol.74
, pp. 045002
-
-
Gies, H.1
Klingmuller, K.2
-
28
-
-
0343909645
-
-
PRPLCM 0370-1573 10.1016/0370-1573(93)90047-H
-
P. Meakin, Phys. Rep. PRPLCM 0370-1573 10.1016/0370-1573(93)90047-H 235 1991 (1994).
-
(1994)
Phys. Rep.
, vol.235
, pp. 1991
-
-
Meakin, P.1
-
29
-
-
0343909645
-
-
IJPBEV 0217-9792 10.1016/0370-1573(93)90047-H
-
J. Krim and G. Palasantzas, Int. J. Mod. Phys. B IJPBEV 0217-9792 10.1016/0370-1573(93)90047-H 9, 599 (1995).
-
(1995)
Int. J. Mod. Phys. B
, vol.9
, pp. 599
-
-
Krim, J.1
Palasantzas, G.2
-
30
-
-
0001066994
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.48.14472
-
G. Palasantzas, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.48.14472 48, 14472 (1993);
-
(1993)
Phys. Rev. B
, vol.48
, pp. 14472
-
-
Palasantzas, G.1
-
31
-
-
33646635275
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.49.5785
-
G. Palasantzas, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.49.5785 49, 5785 (1994);
-
(1994)
Phys. Rev. B
, vol.49
, pp. 5785
-
-
Palasantzas, G.1
-
32
-
-
3743120964
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.73.3564
-
G. Palasantzas and J. Krim, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.73.3564 73, 3564 (1994);
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 3564
-
-
Palasantzas, G.1
Krim, J.2
-
33
-
-
0031190893
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.56.1254
-
G. Palasantzas, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.56.1254 56, 1254 (1997).
-
(1997)
Phys. Rev. e
, vol.56
, pp. 1254
-
-
Palasantzas, G.1
-
34
-
-
40949136115
-
-
For self-affine roughness g (r) scales as g (r) r2H if r ξ, and g (r) =2 w2 if r ξ. Thus, H is determined by the slope (=2H) of the linear part of g (r) in a log-log plot, and ξ by the crossover between a linear fit and the saturation regime that gives also w.
-
For self-affine roughness g (r) scales as g (r) r2H if r ξ, and g (r) =2 w2 if r ξ. Thus, H is determined by the slope (=2H) of the linear part of g (r) in a log-log plot, and ξ by the crossover between a linear fit and the saturation regime that gives also w.
-
-
-
-
35
-
-
40949164279
-
-
http://www.veeco.com/products/details.php?cat=1&sub=&pid=192. Creep and hysteresis are minimized by the closed loop scanner (noise error <0.5 nm and 0.1% nonlinearity). The force curves in Fig. 3 consist of 103 points (averaged above 100 nm if the difference in force between successive points was ≤1%). Each force curve is measured in 0.5 s to minimize thermal drift.
-
http://www.veeco.com/products/details.php?cat=1&sub=&pid=192. Creep and hysteresis are minimized by the closed loop scanner (noise error <0.5 nm and 0.1% nonlinearity). The force curves in Fig. 3 consist of 103 points (averaged above 100 nm if the difference in force between successive points was ≤1%). Each force curve is measured in 0.5 s to minimize thermal drift.
-
-
-
-
36
-
-
40949107285
-
-
In Fig. 3, the actual theory plots show a close linear relation for the force vs separation D as FCas D-2.5, and therefore we obtain the relative error in the force Δ FCas FCas ≅ (2.5ΔD D) with ΔD the error in separation. Thus, the error in do is an experimental error and it will be transferred as an error in the force curve. In fact, upon repeating the force measurements, one can see a variation in the force curves due to this error in do (this point is also clarified in the work arXiv:quant-ph/0312043 (unpublished).
-
In Fig. 3, the actual theory plots show a close linear relation for the force vs separation D as FCas D-2.5, and therefore we obtain the relative error in the force Δ FCas FCas ≅ (2.5ΔD D) with ΔD the error in separation. Thus, the error in do is an experimental error and it will be transferred as an error in the force curve. In fact, upon repeating the force measurements, one can see a variation in the force curves due to this error in do (this point is also clarified in the work D. Iannuzzi, I. Gelfand, M. Lisanti, and F. Capasso, (arXiv:quant-ph/0312043 (unpublished).
-
-
-
Iannuzzi, D.1
Gelfand, I.2
Lisanti, M.3
Capasso, F.4
-
37
-
-
36148948927
-
-
PHTOAD 0031-9228
-
S. K. Lamoreaux, Phys. Today PHTOAD 0031-9228 60 (2), 40 (2007).
-
(2007)
Phys. Today
, vol.60
, Issue.2
, pp. 40
-
-
Lamoreaux, S.K.1
-
39
-
-
38849199590
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.77.035439
-
V. B. Svetovoy, P. J. van Zwol, G. Palasantzas, and J. Th. M. De Hosson, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.77.035439 77, 035439 (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 035439
-
-
Svetovoy, V.B.1
Van Zwol, P.J.2
Palasantzas, G.3
De Hosson, J.Th.M.4
-
40
-
-
3943070464
-
-
Capillary condensation occurs for separation closer than about twice the Kelvin condensation length (∼1.5 nm for water at room temperature and 50% relative humidity). JVTBD9 0734-211X 10.1116/1.589247
-
Capillary condensation occurs for separation closer than about twice the Kelvin condensation length (∼1.5 nm for water at room temperature and 50% relative humidity). R. Maboudian and R. T. Howe J. Vac. Sci. Technol. B JVTBD9 0734-211X 10.1116/1.589247 15, 1 (1997);
-
(1997)
J. Vac. Sci. Technol. B
, vol.15
, pp. 1
-
-
Maboudian, R.1
Howe, R.T.2
|