-
1
-
-
5844297152
-
Theory of reproducing kernels
-
Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
2
-
-
34547435898
-
On early stopping in gradient descent learning
-
Caponnetto A., Rosasco L., and Yao Y. On early stopping in gradient descent learning. Constr. Approx. 26 (2007) 289-315
-
(2007)
Constr. Approx.
, vol.26
, pp. 289-315
-
-
Caponnetto, A.1
Rosasco, L.2
Yao, Y.3
-
3
-
-
0030145382
-
Worst-case quadratic loss bounds for prediction using linear functions and gradient descent
-
Cesa-Bianchi N., Long P., and Warmuth M.K. Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Trans. Neural Networks 7 (1996) 604-619
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 604-619
-
-
Cesa-Bianchi, N.1
Long, P.2
Warmuth, M.K.3
-
4
-
-
24944432318
-
Model selection for regularized least-squares algorithm in learning theory
-
De Vito E., Caponnetto A., and Rosasco L. Model selection for regularized least-squares algorithm in learning theory. Found. Comput. Math. 5 (2005) 59-85
-
(2005)
Found. Comput. Math.
, vol.5
, pp. 59-85
-
-
De Vito, E.1
Caponnetto, A.2
Rosasco, L.3
-
5
-
-
14344264951
-
-
D. Hardin, I. Tsamardinos, C.F. Aliferis, A theoretical characterization of linear SVM-based feature selection, in: Proc. of the 21st Int. Conf. on Mach. Learning, 2004
-
D. Hardin, I. Tsamardinos, C.F. Aliferis, A theoretical characterization of linear SVM-based feature selection, in: Proc. of the 21st Int. Conf. on Mach. Learning, 2004
-
-
-
-
6
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
Lugosi G., and Vayatis N. On the Bayes-risk consistency of regularized boosting methods. Ann. Statist. 32 (2004) 30-55
-
(2004)
Ann. Statist.
, vol.32
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
7
-
-
33845234476
-
Estimation of gradients and coordinate covariation in classification
-
Mukherjee S., and Wu Q. Estimation of gradients and coordinate covariation in classification. J. Mach. Learn. Res. 7 (2006) 2481-2514
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2481-2514
-
-
Mukherjee, S.1
Wu, Q.2
-
8
-
-
33646374652
-
Learning coordinate covariances via gradients
-
Mukherjee S., and Zhou D.X. Learning coordinate covariances via gradients. J. Mach. Learn. Res. 7 (2006) 519-549
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 519-549
-
-
Mukherjee, S.1
Zhou, D.X.2
-
9
-
-
33744740175
-
Online learning algorithms
-
Smale S., and Yao Y. Online learning algorithms. Found. Comput. Math. 6 (2006) 145-170
-
(2006)
Found. Comput. Math.
, vol.6
, pp. 145-170
-
-
Smale, S.1
Yao, Y.2
-
10
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
Smale S., and Zhou D.X. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41 (2004) 279-305
-
(2004)
Bull. Amer. Math. Soc.
, vol.41
, pp. 279-305
-
-
Smale, S.1
Zhou, D.X.2
-
11
-
-
34547455409
-
Learning theory estimates via integral operators and their approximations
-
Smale S., and Zhou D.X. Learning theory estimates via integral operators and their approximations. Constr. Approx. 26 (2007) 153-172
-
(2007)
Constr. Approx.
, vol.26
, pp. 153-172
-
-
Smale, S.1
Zhou, D.X.2
-
12
-
-
38949155588
-
-
S. Mukherjee, Q. Wu, D.X. Zhou, Gradient learning and feature selection on manifolds, preprint, 2006
-
S. Mukherjee, Q. Wu, D.X. Zhou, Gradient learning and feature selection on manifolds, preprint, 2006
-
-
-
-
13
-
-
34547603945
-
Fully online classification by regularization
-
Ye G.B., and Zhou D.X. Fully online classification by regularization. Appl. Comput. Harmon. Anal. 23 (2007) 198-214
-
(2007)
Appl. Comput. Harmon. Anal.
, vol.23
, pp. 198-214
-
-
Ye, G.B.1
Zhou, D.X.2
-
14
-
-
33750594552
-
Online regularized classification algorithms
-
Ying Y., and Zhou D.X. Online regularized classification algorithms. IEEE Trans. Inform. Theory 52 (2006) 4775-4788
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, pp. 4775-4788
-
-
Ying, Y.1
Zhou, D.X.2
|