메뉴 건너뛰기




Volumn 4005 LNAI, Issue , 2006, Pages 50-64

Uniform convergence of adaptive graph-based regularization

Author keywords

[No Author keywords available]

Indexed keywords

DATA STRUCTURES; FUNCTION EVALUATION; PROBABILITY; THEOREM PROVING;

EID: 33746077095     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11776420_7     Document Type: Conference Paper
Times cited : (71)

References (15)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comp., 15(6): 1373-1396, 2003.
    • (2003) Neural Comp. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on manifolds
    • M. Belkin and P. Niyogi. Semi-supervised learning on manifolds. Machine Learning, 56:209-239, 2004.
    • (2004) Machine Learning , vol.56 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 33746036704 scopus 로고    scopus 로고
    • Towards a theoretical foundation for Laplacian-based manifold methods
    • P. Auer and R. Meir, editors, Berlin, Springer
    • M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold methods. In P. Auer and R. Meir, editors, Proc. of the 18th Conf. on Learning Theory (COLT), Berlin, 2005. Springer.
    • (2005) Proc. of the 18th Conf. on Learning Theory (COLT)
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 84898942071 scopus 로고    scopus 로고
    • Measure based regularization
    • S. Thrun, L. Saul, and B. Schölkopf, editors, MIT Press
    • O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In S. Thrun, L. Saul, and B. Schölkopf, editors, Adv. in Neur. Inf. Proc. Syst. (NIPS), volume 16. MIT Press, 2004.
    • (2004) Adv. in Neur. Inf. Proc. Syst. (NIPS) , vol.16
    • Bousquet, O.1    Chapelle, O.2    Hein, M.3
  • 8
    • 33746050192 scopus 로고    scopus 로고
    • PhD thesis, MPI für biologische Kybernetik/Technische Universität Darmstadt
    • M. Hein. Geometrical aspects of statistical learning theory. PhD thesis, MPI für biologische Kybernetik/Technische Universität Darmstadt, 2005. http://www.kyb.mpg.de/publication.html?user=mh.
    • (2005) Geometrical Aspects of Statistical Learning Theory
    • Hein, M.1
  • 9
    • 33749598434 scopus 로고    scopus 로고
    • From graphs to manifolds - Weak and strong pointwise consistency of graph Laplacians
    • P. Auer and R. Meir, editors, Berlin, Springer
    • M. Hein, J.-Y. Audibert, and U. von Luxburg. From graphs to manifolds - weak and strong pointwise consistency of graph Laplacians. In P. Auer and R. Meir, editors, Proc. of the 18th Conf. on Learning Theory (COLT), Berlin, 2005. Springer.
    • (2005) Proc. of the 18th Conf. on Learning Theory (COLT)
    • Hein, M.1    Audibert, J.-Y.2    Von Luxburg, U.3
  • 10
    • 3042906496 scopus 로고
    • Strong uniform convergence of density estimators on compact Euclidean manifolds
    • H. Hendriks, J.H.M. Janssen, and F.H. Ruymgaart. Strong uniform convergence of density estimators on compact Euclidean manifolds. Statist. Prob. Lett., 16:305-311, 1993.
    • (1993) Statist. Prob. Lett. , vol.16 , pp. 305-311
    • Hendriks, H.1    Janssen, J.H.M.2    Ruymgaart, F.H.3
  • 11
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58:13-30, 1963.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 12
    • 0000624821 scopus 로고
    • ε-entropy and ε-capacity of sets in functional spaces
    • A. N. Kolmogorov and V. M. Tihomirov. ε-entropy and ε-capacity of sets in functional spaces. Amer. Math. Soc. Transl, 17:277-364, 1961.
    • (1961) Amer. Math. Soc. Transl , vol.17 , pp. 277-364
    • Kolmogorov, A.N.1    Tihomirov, V.M.2
  • 13
    • 0039895548 scopus 로고    scopus 로고
    • Manifolds with boundary of bounded geometry
    • T. Schick. Manifolds with boundary of bounded geometry. Math. Nachr., 223:103-120, 2001.
    • (2001) Math. Nachr. , vol.223 , pp. 103-120
    • Schick, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.