메뉴 건너뛰기




Volumn 79, Issue , 2008, Pages 1-18

Data fusion methods for integrating data-driven hydrological models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 38349078919     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-75384-1_1     Document Type: Article
Times cited : (8)

References (69)
  • 1
    • 0022929205 scopus 로고
    • An introduction to the European Hydrological System - Système Hydrologique Européen, "SHE", 2: Structure of physically-based, distributed modelling system
    • Abbott MB, Bathurst JC, Cunge JA, O'Connell PE, Rasmussen J (1986) An introduction to the European Hydrological System - Système Hydrologique Européen, "SHE", 2: Structure of physically-based, distributed modelling system. Journal of Hydrology 87: 61-77
    • (1986) Journal of Hydrology , vol.87 , pp. 61-77
    • Abbott, M.B.1    Bathurst, J.C.2    Cunge, J.A.3    O'Connell, P.E.4    Rasmussen, J.5
  • 2
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments
    • Abrahart RJ, See LM (2002) Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments. Hydrology and Earth System Sciences 6: 655-670
    • (2002) Hydrology and Earth System Sciences , vol.6 , pp. 655-670
    • Abrahart, R.J.1    See, L.M.2
  • 3
    • 33748942107 scopus 로고    scopus 로고
    • Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results
    • Ajami NK, Duan QY, Gao XG, Sorooshian S (2006) Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results. J. Hydrometeorol. 7(4): 755-768
    • (2006) J. Hydrometeorol , vol.7 , Issue.4 , pp. 755-768
    • Ajami, N.K.1    Duan, Q.Y.2    Gao, X.G.3    Sorooshian, S.4
  • 4
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • Anctil F, Lauzon N (2004) Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions. Hydrology and Earth System Sciences 8: 940-958
    • (2004) Hydrology and Earth System Sciences , vol.8 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 5
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall runoff modelling based on genetic programming
    • Babovic V, Keijzer M (2002) Rainfall runoff modelling based on genetic programming. Nordic Hydrology 33(5): 331-346
    • (2002) Nordic Hydrology , vol.33 , Issue.5 , pp. 331-346
    • Babovic, V.1    Keijzer, M.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Machine Learning 26: 123-140
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 9
  • 10
    • 0142213746 scopus 로고    scopus 로고
    • Optimization of storage reservoir considering water quantity and quality
    • Chaves P, Kojiri T, Yamashiki Y (2003) Optimization of storage reservoir considering water quantity and quality. Hydrol. Processes 17: 2769-2793
    • (2003) Hydrol. Processes , vol.17 , pp. 2769-2793
    • Chaves, P.1    Kojiri, T.2    Yamashiki, Y.3
  • 11
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • Clair TA, Ehrman JM (1998) Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resources Research 34(3): 447-455
    • (1998) Water Resources Research , vol.34 , Issue.3 , pp. 447-455
    • Clair, T.A.1    Ehrman, J.M.2
  • 12
    • 0030830419 scopus 로고    scopus 로고
    • Sensor fusion potential exploitation - Innovative architectures and illustrative applications
    • Dasarathy BV (1997) Sensor fusion potential exploitation - Innovative architectures and illustrative applications. Proceedings of the IEEE 85: 24-38
    • (1997) Proceedings of the IEEE , vol.85 , pp. 24-38
    • Dasarathy, B.V.1
  • 13
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A web-based toolbox of statistical measures for the standardised assessment of hydrological forecasts
    • Dawson CW, Abrahart RJ, See LM (2007) HydroTest: A web-based toolbox of statistical measures for the standardised assessment of hydrological forecasts. Environmental Modelling and Software 27: 1034-1052
    • (2007) Environmental Modelling and Software , vol.27 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 14
    • 33751057104 scopus 로고    scopus 로고
    • From single-objective to multiple-objective multiplerainfall events automatic calibration of urban storm water runoff models using genetic algorithms
    • di Pierro F, Khu ST, Savic D (2006) From single-objective to multiple-objective multiplerainfall events automatic calibration of urban storm water runoff models using genetic algorithms. Water Science and Technology 54 (6-7): 57-64
    • (2006) Water Science and Technology , vol.54 , Issue.6-7 , pp. 57-64
    • di Pierro, F.1    Khu, S.T.2    Savic, D.3
  • 15
    • 0033156953 scopus 로고    scopus 로고
    • Subsurface Characterization Using Artificial Neural Network and GIS
    • Gangopadyay S, Gautam TR, Gupta AD (1999) Subsurface Characterization Using Artificial Neural Network and GIS. J. Comp. in Civ. Engrg. 13: 153-161
    • (1999) J. Comp. in Civ. Engrg , vol.13 , pp. 153-161
    • Gangopadyay, S.1    Gautam, T.R.2    Gupta, A.D.3
  • 16
    • 4143139874 scopus 로고    scopus 로고
    • Towards the characterization of streamflow simulation uncertainty through multimodel ensembles
    • Georgakakos KP, Seo DJ, Gupta H, Schaake J, Butts MB (2004) Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J. Hydrol. 298(1-4): 222-241
    • (2004) J. Hydrol , vol.298 , Issue.1-4 , pp. 222-241
    • Georgakakos, K.P.1    Seo, D.J.2    Gupta, H.3    Schaake, J.4    Butts, M.B.5
  • 17
    • 33745024580 scopus 로고    scopus 로고
    • Optimal design of artificial neural networks by a multiobjective strategy: Groundwater level predictions
    • Giustolisi O, Simeone V (2006) Optimal design of artificial neural networks by a multiobjective strategy: Groundwater level predictions. Hydrological Sciences Journal 51(3): 502-523
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.3 , pp. 502-523
    • Giustolisi, O.1    Simeone, V.2
  • 18
    • 0033627322 scopus 로고    scopus 로고
    • The application of artificial neural networks for the prediction of water quality of polluted aquifer
    • Gumrah F, Oz B, Guler B, Evin S (2000) The application of artificial neural networks for the prediction of water quality of polluted aquifer. Water Air and Soil Pollution 119: 275-294
    • (2000) Water Air and Soil Pollution , vol.119 , pp. 275-294
    • Gumrah, F.1    Oz, B.2    Guler, B.3    Evin, S.4
  • 19
    • 0037765030 scopus 로고    scopus 로고
    • Estimation of urban runoff and water quality using remote sensing and artificial intelligence
    • Ha SR, Park SY, Park DH (2003) Estimation of urban runoff and water quality using remote sensing and artificial intelligence. Water Science and Technology 47: 319-325
    • (2003) Water Science and Technology , vol.47 , pp. 319-325
    • Ha, S.R.1    Park, S.Y.2    Park, D.H.3
  • 21
    • 0030735959 scopus 로고    scopus 로고
    • An introduction to multisensor data fusion
    • Hall DL, Linas J (1997) An introduction to multisensor data fusion. Proceedings of the IEEE 85 (1): 6-23
    • (1997) Proceedings of the IEEE , vol.85 , Issue.1 , pp. 6-23
    • Hall, D.L.1    Linas, J.2
  • 25
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • art. no. W04302
    • Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research 40, art. no. W04302
    • (2004) Water Resources Research , vol.40
    • Jain, A.1    Srinivasulu, S.2
  • 28
    • 0023524387 scopus 로고
    • Nearest neighbour methods for non-parametric rainfall runoff forecasting
    • Karlsson M, Yakowitz S (1987) Nearest neighbour methods for non-parametric rainfall runoff forecasting. Water Resour. Res. 23: 1300-1308
    • (1987) Water Resour. Res , vol.23 , pp. 1300-1308
    • Karlsson, M.1    Yakowitz, S.2
  • 29
    • 84927958012 scopus 로고    scopus 로고
    • Genetic programming, ensemble methods and the bias/variance tradeoff - Introductory investigations
    • Keijzer M, Babovic V (2000) Genetic programming, ensemble methods and the bias/variance tradeoff - Introductory investigations. Lecture Notes in Computer Science 1802: 76-90
    • (2000) Lecture Notes in Computer Science 1802 , pp. 76-90
    • Keijzer, M.1    Babovic, V.2
  • 32
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model. 2. Application and results
    • Kitanidis PK, Bras RL (1980) Real-time forecasting with a conceptual hydrologic model. 2. Application and results. Water Resour. Res. 16(6): 1034-1044
    • (1980) Water Resour. Res , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 34
    • 0033401881 scopus 로고    scopus 로고
    • Cluster-based hydrological analysis and prediction of long-term climate change and drought discharge
    • IAHS Publ
    • Kojiri T (1999) Cluster-based hydrological analysis and prediction of long-term climate change and drought discharge. Hydrological Extremes: Understanding, Prediction Mitigating, IAHS Publ. No.255, 45-54
    • (1999) Hydrological Extremes: Understanding, Prediction Mitigating , Issue.255 , pp. 45-54
    • Kojiri, T.1
  • 35
    • 38349039697 scopus 로고    scopus 로고
    • Knowledge-based decision support system for reservoir operation with knowledge acquisition process on flood prediction and risk accuracy
    • Beijing
    • Kojiri T, Hanatani S (2002) Knowledge-based decision support system for reservoir operation with knowledge acquisition process on flood prediction and risk accuracy. Flood Defence (2002, Vol.II, Beijing, 1430-1437
    • (2002) Flood Defence , vol.2 , pp. 1430-1437
    • Kojiri, T.1    Hanatani, S.2
  • 37
    • 0030162087 scopus 로고    scopus 로고
    • Rainfall-runoff modelling of the Ouse basin, North Yorkshire: An application of a physically-based distributed model
    • Kuchment LS, Demidov VN, Naden PS, Cooper DM, Broadhurst P (1996) Rainfall-runoff modelling of the Ouse basin, North Yorkshire: An application of a physically-based distributed model. Journal of Hydrology 181: 323-342
    • (1996) Journal of Hydrology , vol.181 , pp. 323-342
    • Kuchment, L.S.1    Demidov, V.N.2    Naden, P.S.3    Cooper, D.M.4    Broadhurst, P.5
  • 38
    • 1842795186 scopus 로고    scopus 로고
    • More floods, less rain: Changing hydrology in a Yorkshire context
    • Lane S (2002) More floods, less rain: Changing hydrology in a Yorkshire context. The Yorkshire and Humber Regional Review 11: 18-19
    • (2002) The Yorkshire and Humber Regional Review , vol.11 , pp. 18-19
    • Lane, S.1
  • 40
    • 0036685472 scopus 로고    scopus 로고
    • Using complex permittivity and artificial neural networks for contaminant prediction
    • Lindsay JB, Shang JQ, Rowe RK (2002) Using complex permittivity and artificial neural networks for contaminant prediction. J. Envir. Engrg. 128: 740-747
    • (2002) J. Envir. Engrg , vol.128 , pp. 740-747
    • Lindsay, J.B.1    Shang, J.Q.2    Rowe, R.K.3
  • 42
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier HR, Dandy G (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research 32: 1013-1022
    • (1996) Water Resources Research , vol.32 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.2
  • 43
    • 33846370929 scopus 로고    scopus 로고
    • Modeling the catchment via mixtures: Issues of model specification and validation
    • Marshall L, Sharma A, Nott D (2006) Modeling the catchment via mixtures: Issues of model specification and validation. Water Resour. Res. 42(11): W07410
    • (2006) Water Resour. Res , vol.42 , Issue.11
    • Marshall, L.1    Sharma, A.2    Nott, D.3
  • 44
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41: 399-417
    • (1996) Hydrological Sciences Journal , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 46
    • 33748041654 scopus 로고    scopus 로고
    • Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations
    • Oudin L, Andreassian V, Mathevet T, Perrin C, Michel C (2006) Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations. Water Resour. Res. 42(7): W07410
    • (2006) Water Resour. Res , vol.42 , Issue.7
    • Oudin, L.1    Andreassian, V.2    Mathevet, T.3    Perrin, C.4    Michel, C.5
  • 48
    • 0001857840 scopus 로고    scopus 로고
    • Streamflow forecasting based on artificial neural networks
    • Govindaraju RS, Ramachandra Rao A eds, Kluwer Academic Publishers, Dordrecht, pp
    • Salas JD, Markus M, Tokar AS (2000) Streamflow forecasting based on artificial neural networks. In: Govindaraju RS, Ramachandra Rao A (eds) Artificial Neural Networks in Hydrology, Kluwer Academic Publishers, Dordrecht, pp 23-51
    • (2000) Artificial Neural Networks in Hydrology , pp. 23-51
    • Salas, J.D.1    Markus, M.2    Tokar, A.S.3
  • 49
    • 0036750755 scopus 로고    scopus 로고
    • New strategy for optimizing water application under trickle irrigation
    • Schmitz GH, Schutze N, Petersohn U (2002) New strategy for optimizing water application under trickle irrigation. J. Irrig. and Drain. Engrg. 128: 287-297
    • (2002) J. Irrig. and Drain. Engrg , vol.128 , pp. 287-297
    • Schmitz, G.H.1    Schutze, N.2    Petersohn, U.3
  • 50
    • 0033381989 scopus 로고    scopus 로고
    • See LM, Openshaw S (1999) Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal 44: 763-778
    • See LM, Openshaw S (1999) Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal 44: 763-778
  • 51
    • 0034254025 scopus 로고    scopus 로고
    • See LM, Openshaw S (2000) A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal 45: 523-536
    • See LM, Openshaw S (2000) A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal 45: 523-536
  • 52
    • 38349039696 scopus 로고    scopus 로고
    • See LM, Shamseldin AY, Abrahart RJ, Dawson CW, Heppenstall AJ (2006) Rainfall-runoff modelling using a committee approach, EGU, Vienna, Austria, 5-9 Apr 2006
    • See LM, Shamseldin AY, Abrahart RJ, Dawson CW, Heppenstall AJ (2006) Rainfall-runoff modelling using a committee approach, EGU, Vienna, Austria, 5-9 Apr 2006
  • 53
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network to rainfall-runoff modelling
    • Shamseldin AY (1997) Application of a neural network to rainfall-runoff modelling. Journal of Hydrology 199: 272-294
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 54
    • 0030131272 scopus 로고    scopus 로고
    • A nearest neighbour linear perturbation model for river flow forecasting
    • Shamseldin AY, O'Connor KM (1996) A nearest neighbour linear perturbation model for river flow forecasting. J. of Hydrology 179: 353-375
    • (1996) J. of Hydrology , vol.179 , pp. 353-375
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 55
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the multilayer feed-forward neural network method used for river flow forecasting
    • Shamseldin AY, Nasr AE, O'Connor KM (2002) Comparison of different forms of the multilayer feed-forward neural network method used for river flow forecasting. Hydrology and Earth System Sciences 6: 671-684
    • (2002) Hydrology and Earth System Sciences , vol.6 , pp. 671-684
    • Shamseldin, A.Y.1    Nasr, A.E.2    O'Connor, K.M.3
  • 56
    • 4744360442 scopus 로고    scopus 로고
    • Identification of unknown groundwater pollution sources using artificial neural networks
    • Singh RM, Datta B, Jain A (2003) Identification of unknown groundwater pollution sources using artificial neural networks. J. Water Resour. Plng. and Mgmt 130: 506-514
    • (2003) J. Water Resour. Plng. and Mgmt , vol.130 , pp. 506-514
    • Singh, R.M.1    Datta, B.2    Jain, A.3
  • 60
    • 0037565156 scopus 로고    scopus 로고
    • Model tree as an alternative to neural network in rainfall-runoff modelling
    • Solomatine DP, Dulal KN (2003) Model tree as an alternative to neural network in rainfall-runoff modelling. Hydrological Sciences Journal 48: 399-411
    • (2003) Hydrological Sciences Journal , vol.48 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 61
    • 33645974258 scopus 로고    scopus 로고
    • Modular learning models in forecasting natural phenomena
    • Solomatine DP, Siek MB (2006) Modular learning models in forecasting natural phenomena. Neural Networks 19: 215-224
    • (2006) Neural Networks , vol.19 , pp. 215-224
    • Solomatine, D.P.1    Siek, M.B.2
  • 62
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E, Brath A, Montanari A (2000) Comparison of short-term rainfall prediction models for real-time flood forecasting. J. of Hydrology 239: 132-147
    • (2000) J. of Hydrology , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 64
    • 0002919951 scopus 로고
    • Progress and directions in rainfall-runoff modelling
    • Systems, Jakeman AJ, Beck MB, McAleer MJ eds, Wiley
    • Wheater HS, Jakeman AJ, Beven KJ (1993) Progress and directions in rainfall-runoff modelling. In: Modelling Change in Environmental Systems, Jakeman AJ, Beck MB, McAleer MJ (eds), 101-132, Wiley
    • (1993) Modelling Change in Environmental , pp. 101-132
    • Wheater, H.S.1    Jakeman, A.J.2    Beven, K.J.3
  • 65
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
    • Xiong LH, Shamseldin AY, O'Connor KM (2001) A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system. J. of Hydrology 245: 196-217
    • (2001) J. of Hydrology , vol.245 , pp. 196-217
    • Xiong, L.H.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 66
    • 38349042092 scopus 로고    scopus 로고
    • Optimizing groundwater remediation designs under uncertainty using dynamic surrogates and noisy genetic algorithms
    • September 4-8, Nice, pp
    • Yan SQ, Minsker B (2006) Optimizing groundwater remediation designs under uncertainty using dynamic surrogates and noisy genetic algorithms. In: Proceedings of the 7th International Conference on HydroInformatics, September 4-8 2006, Nice, pp 2513-2520
    • (2006) Proceedings of the 7th International Conference on HydroInformatics , pp. 2513-2520
    • Yan, S.Q.1    Minsker, B.2
  • 68
    • 0037099572 scopus 로고
    • Advances in real-time flood forecasting
    • DOI: 1410.1098/rsta.2002.1008
    • Young P (2002) Advances in real-time flood forecasting. Philosophical Transactions of the Royal Society London A 360(1796): 1433-1450, DOI: 1410.1098/rsta.2002.1008
    • (1796) Philosophical Transactions of the Royal Society London A , vol.360 , pp. 1433-1450
    • Young, P.1
  • 69
    • 0042732130 scopus 로고    scopus 로고
    • Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale
    • Young P (2003) Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale. Hydrol. Processes 17(11): 2195-2217
    • (2003) Hydrol. Processes , vol.17 , Issue.11 , pp. 2195-2217
    • Young, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.