메뉴 건너뛰기




Volumn 4, Issue 4, 2007, Pages 223-234

Computational methods and algorithms for mass-spectrometry based differential proteomics

Author keywords

Biomarker discovery; Differential proteomics; Disease diagnostics; Mass spec data analysis; Proteomic profile analysis

Indexed keywords


EID: 37549044286     PISSN: 15701646     EISSN: None     Source Type: Journal    
DOI: 10.2174/157016407783221268     Document Type: Review
Times cited : (3)

References (73)
  • 1
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein finger-printing coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam, B.L., Qu, Y., Davis, J.W., Ward, M.D., Clements, M.A., Cazares, L., Semmes, O.J., Schellhammer, P.F., et al. (2002). Serum protein finger-printing coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Research 62: 3609-14.
    • (2002) Cancer Research , vol.62 , pp. 3609-3614
    • Adam, B.L.1    Qu, Y.2    Davis, J.W.3    Ward, M.D.4    Clements, M.A.5    Cazares, L.6    Semmes, O.J.7    Schellhammer, P.F.8
  • 2
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • Allison, D.B., Xiangqin, C., Page, G.P. and Sabripour, M. (2006). Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet. 7: 55-65.
    • (2006) Nat. Rev. Genet , vol.7 , pp. 55-65
    • Allison, D.B.1    Xiangqin, C.2    Page, G.P.3    Sabripour, M.4
  • 3
    • 1842559788 scopus 로고    scopus 로고
    • Reproducibility of SELDI-TOF protein patterns in serum: Comparing datasets from different experiments
    • Baggerly, K.A., Morris J. S., and Coombes, K. (2004). Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20: 777-85.
    • (2004) Bioinformatics , vol.20 , pp. 777-785
    • Baggerly, K.A.1    Morris, J.S.2    Coombes, K.3
  • 4
    • 18344396961 scopus 로고    scopus 로고
    • An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers
    • Ball, G., Holding, F., Allibone, R.O., Lowe, J., Ali, S., McCardle, S., Ellis, I.O., Creaser, C., et al. (2002). An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18: 395-404.
    • (2002) Bioinformatics , vol.18 , pp. 395-404
    • Ball, G.1    Holding, F.2    Allibone, R.O.3    Lowe, J.4    Ali, S.5    McCardle, S.6    Ellis, I.O.7    Creaser, C.8
  • 5
    • 19544367642 scopus 로고    scopus 로고
    • A novel approach for clustering proteomics data using Bayesian fast Fourier transform
    • Bensmail, H., Golek, J., Moody, M.M., Semmes, J.O. and Haoudi, A. (2005). A novel approach for clustering proteomics data using Bayesian fast Fourier transform. Bioinformatics 21: 2210-24.
    • (2005) Bioinformatics , vol.21 , pp. 2210-2224
    • Bensmail, H.1    Golek, J.2    Moody, M.M.3    Semmes, J.O.4    Haoudi, A.5
  • 6
    • 0033948589 scopus 로고    scopus 로고
    • Automatic poisson peak harvesting for high throuput protein identification
    • Breen, E.Y., Hopwood, F., G., Williams, K.L. and Wilkins, M.R. (2000). Automatic poisson peak harvesting for high throuput protein identification. Electrophoresis 21: 2243-51.
    • (2000) Electrophoresis , vol.21 , pp. 2243-2251
    • Breen, E.Y.1    Hopwood, F.G.2    Williams, K.L.3    Wilkins, M.R.4
  • 8
    • 18744411077 scopus 로고    scopus 로고
    • Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform
    • Coombes, K., Tsavachidis, S., Morris, J.S., Baggerly, K., Hung, M. and Kuerer, H. (2005). Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 15: 4107-17.
    • (2005) Proteomics , vol.15 , pp. 4107-4117
    • Coombes, K.1    Tsavachidis, S.2    Morris, J.S.3    Baggerly, K.4    Hung, M.5    Kuerer, H.6
  • 9
    • 0037276175 scopus 로고    scopus 로고
    • Statistical tests for differential expression in cDNA microarray experiments
    • Cui, X. and Churchill, G.A. (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome. Biol. 4: 210.
    • (2003) Genome. Biol , vol.4 , pp. 210
    • Cui, X.1    Churchill, G.A.2
  • 10
    • 84891286615 scopus 로고    scopus 로고
    • Diagnostic Proteomics
    • eds T. D. Veenstra, J.R. Yates, Wiley
    • DaRue, A.P. and Haleem, J.I. (2006). Diagnostic Proteomics. In Proteomics For Biological Discovery. (eds T. D. Veenstra, J.R. Yates), Wiley, 247-271.
    • (2006) Proteomics For Biological Discovery , pp. 247-271
    • DaRue, A.P.1    Haleem, J.I.2
  • 12
    • 4043103433 scopus 로고    scopus 로고
    • Ovacheck: Doubts voiced soon after publication
    • Diamandis, E.P. (2004). Ovacheck: doubts voiced soon after publication. Nature 430: 611.
    • (2004) Nature , vol.430 , pp. 611
    • Diamandis, E.P.1
  • 13
    • 84889794570 scopus 로고    scopus 로고
    • Supervised methods with genomic data: A review and cautionary viewData analysis and visualisation in genomics and proteomics, by F
    • Dopazo, eds, John Wiley & Sons
    • Díaz-Uriarte "Supervised methods with genomic data: a review and cautionary view"Data analysis and visualisation in genomics and proteomics, by F. Azuaje, and J. Dopazo, (eds.), John Wiley & Sons, 2005.
    • (2005) Azuaje, and J
    • Díaz-Uriarte1
  • 14
    • 84889794570 scopus 로고    scopus 로고
    • Supervised methods with genomic data: A review and cautionary review
    • eds. Azuaje F. and Dopazo J, Chichester: Wiley
    • Díaz-Uriarte, R. (2005). Supervised methods with genomic data: a review and cautionary review. In Data Analysis and Visualization in Genomics and Proteomics, (eds. Azuaje F. and Dopazo J.), Chichester: Wiley. 193-214.
    • (2005) Data Analysis and Visualization in Genomics and Proteomics , pp. 193-214
    • Díaz-Uriarte, R.1
  • 15
    • 37549008515 scopus 로고    scopus 로고
    • Clustering - Class Discovery in the Post-Genomic Era
    • eds. W. Dubitzky, M. Granzow and D. Berrar, Springer US
    • Dopazo, J. (2007). Clustering - Class Discovery in the Post-Genomic Era. In Fundamentals of Data Mining in Genomics and Proteomics (eds. W. Dubitzky, M. Granzow and D. Berrar), Springer US :123-48.
    • (2007) Fundamentals of Data Mining in Genomics and Proteomics , pp. 123-148
    • Dopazo, J.1
  • 16
    • 84889776238 scopus 로고    scopus 로고
    • Data and Predictive Model Integration: An Overview of Key Concepts, Problems and Solutions
    • eds. F. Azuaje, and J. Dopazo, John Wiley & Sons
    • Dopazo, J. and Wang, H. (2005). Data and Predictive Model Integration: An Overview of Key Concepts, Problems and Solutions. In Data analysis and visualisation in genomics and proteomics, (eds. F. Azuaje, and J. Dopazo,), John Wiley & Sons.
    • (2005) Data analysis and visualisation in genomics and proteomics
    • Dopazo, J.1    Wang, H.2
  • 17
    • 33748659203 scopus 로고    scopus 로고
    • Improved peak detection in mass spectrometry spectrum by incorporating continuous wavelet transform-based pattern matching
    • Du, P., Kibbe, W.A. and Lin, S.M. (2006). Improved peak detection in mass spectrometry spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22: 2059-65.
    • (2006) Bioinformatics , vol.22 , pp. 2059-2065
    • Du, P.1    Kibbe, W.A.2    Lin, S.M.3
  • 19
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit, S., Shaffer, J.P. and Boldrick, J.C. (2003). Multiple hypothesis testing in microarray experiments. Stat. Sci. 18: 71-103.
    • (2003) Stat. Sci , vol.18 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 20
    • 33846978784 scopus 로고    scopus 로고
    • Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting
    • Dupuy, A. and Simon, R.M. (2007). Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting. JNCI J. Natl. Cancer Inst. 99: 147-57.
    • (2007) JNCI J. Natl. Cancer Inst , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 21
    • 0041859530 scopus 로고    scopus 로고
    • Preprocessing of tandem mass spectrometric data to support automatic protein identification
    • Gentzel, M., Koecher, T., Ponnusamy, S. and Wilm, M. (2003). Preprocessing of tandem mass spectrometric data to support automatic protein identification. Proteomics 3: 1597-610.
    • (2003) Proteomics , vol.3 , pp. 1597-1610
    • Gentzel, M.1    Koecher, T.2    Ponnusamy, S.3    Wilm, M.4
  • 22
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using the second order information for training SVM
    • Fan, R.-E., Chen, P.-H. and Lin, C.-J. (2005). Working set selection using the second order information for training SVM. J. Mach. Learn. Res. 6: 1889-918.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 24
    • 34249663294 scopus 로고    scopus 로고
    • Analyzing gene expression data in terms of gene sets: Methodological issues
    • Goeman, J.J. and Bühlmann, P. (2007). Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23: 980-7.
    • (2007) Bioinformatics , vol.23 , pp. 980-987
    • Goeman, J.J.1    Bühlmann, P.2
  • 25
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T.P., Slonim, D., Tamayo, T., Huard, C., Gaasenbeek, M., Mesirov, J.P. Coller, H., Loh, M.L., et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-7.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.P.1    Slonim, D.2    Tamayo, T.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6    Coller, H.7    Loh, M.L.8
  • 26
    • 0004063090 scopus 로고    scopus 로고
    • MacMillan College, Publishing Company. Second Edition
    • Haykin, S. (1999). Neural Networks. MacMillan College, Publishing Company. Second Edition.
    • (1999) Neural Networks
    • Haykin, S.1
  • 27
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero, J., Valencia, A. and Dopazo, J. (2001). A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17: 126-36.
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 29
    • 2942513120 scopus 로고    scopus 로고
    • Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial
    • Izmirlian, G. (2004). Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial. Ann. N.Y. Acad. Sci. 1020:154-74.
    • (2004) Ann. N.Y. Acad. Sci , vol.1020 , pp. 154-174
    • Izmirlian, G.1
  • 30
    • 24644470505 scopus 로고    scopus 로고
    • Ontological analysis of gene expression data: Current tools, limitations, and open problems
    • Khatri, P. and Draghici, S. (2005). Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21: 3587-95.
    • (2005) Bioinformatics , vol.21 , pp. 3587-3595
    • Khatri, P.1    Draghici, S.2
  • 31
    • 19544377389 scopus 로고    scopus 로고
    • Classification of bacterial species from proteomic data using combinatorial approaches incorporating artificial neural networks, cluster analysis and principal components analysis
    • Lancashire, L., Schmid, O., Shah, H. and Ball, G. (2005). Classification of bacterial species from proteomic data using combinatorial approaches incorporating artificial neural networks, cluster analysis and principal components analysis. Bioinformatics 21: 2191-9.
    • (2005) Bioinformatics , vol.21 , pp. 2191-2199
    • Lancashire, L.1    Schmid, O.2    Shah, H.3    Ball, G.4
  • 32
    • 39049193622 scopus 로고    scopus 로고
    • Lange, E., Gropl, C., Reinert, K., Kohlbacher, O. and Hildebrandt, A. (2006). High-accuracy peak picking of proteomics data using wavelet techniques. Proceedings of Pacific Symposium on Biocomputing 2006Maui, Hawaii, USA pp. 243-54.
    • Lange, E., Gropl, C., Reinert, K., Kohlbacher, O. and Hildebrandt, A. (2006). High-accuracy peak picking of proteomics data using wavelet techniques. Proceedings of Pacific Symposium on Biocomputing 2006Maui, Hawaii, USA pp. 243-54.
  • 34
    • 25444485102 scopus 로고    scopus 로고
    • Feature extraction for classification of proteomic mass spectra: A comparative study
    • eds Isabelle Guyon, Steve Gunn, Masoud Nikravesh, Lofti Zadeh, Springer
    • Levner, I., Bulitko, V. and Lin, G. (2005). Feature extraction for classification of proteomic mass spectra: A comparative study. In Feature Extraction, Foundations and Applications (eds Isabelle Guyon, Steve Gunn, Masoud Nikravesh, Lofti Zadeh), Springer
    • (2005) Feature Extraction, Foundations and Applications
    • Levner, I.1    Bulitko, V.2    Lin, G.3
  • 35
    • 7244225752 scopus 로고    scopus 로고
    • Discovery of significant rules for classifying cancer diagnosis data
    • ii93-ii102
    • Li, J., Liu, H., Ng, S.K. and Wong, L. (2003). Discovery of significant rules for classifying cancer diagnosis data. Bioinformatics 19: Suppl. 2, ii93-ii102.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Li, J.1    Liu, H.2    Ng, S.K.3    Wong, L.4
  • 36
    • 0036324715 scopus 로고    scopus 로고
    • Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer
    • Li, J., Zhang, Z., Rosenzweig, J., Wang, Y.Y. and Chan, D.W. (2002). Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem. 48: 1296-304.
    • (2002) Clin. Chem , vol.48 , pp. 1296-1304
    • Li, J.1    Zhang, Z.2    Rosenzweig, J.3    Wang, Y.Y.4    Chan, D.W.5
  • 37
    • 0036855422 scopus 로고    scopus 로고
    • Gene Expression Analysis with a Dynamically extended Self-Organized Map that exploits class information
    • Mavroudi, S., Papadimitriou, S. and Bezerianos, A. (2002). Gene Expression Analysis with a Dynamically extended Self-Organized Map that exploits class information. Bioinformatics 18: 1446-53.
    • (2002) Bioinformatics , vol.18 , pp. 1446-1453
    • Mavroudi, S.1    Papadimitriou, S.2    Bezerianos, A.3
  • 38
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan, G.J., Bean, R.W., and Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18: 413-22.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 40
    • 12444337492 scopus 로고    scopus 로고
    • A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions
    • Mian, S., Ball, G., Hornbuckle, J., Holding, F., Carmichael, J., Ellis, I., Ali, S., Li, G., et al. (2003). A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions. Proteomics 3: 1725-37.
    • (2003) Proteomics , vol.3 , pp. 1725-1737
    • Mian, S.1    Ball, G.2    Hornbuckle, J.3    Holding, F.4    Carmichael, J.5    Ellis, I.6    Ali, S.7    Li, G.8
  • 41
    • 18744384734 scopus 로고    scopus 로고
    • Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum
    • Morris, J., Coombes, K., Koomen, J., Baggerly, K. and Kobayashi, R. (2005). Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21: 1764-75.
    • (2005) Bioinformatics , vol.21 , pp. 1764-1775
    • Morris, J.1    Coombes, K.2    Koomen, J.3    Baggerly, K.4    Kobayashi, R.5
  • 42
    • 0041877169 scopus 로고    scopus 로고
    • Estimation of entropy and mutual information
    • Paninski, L. (2003). Estimation of entropy and mutual information. Neural. Computation 6: 1191-253.
    • (2003) Neural. Computation , vol.6 , pp. 1191-1253
    • Paninski, L.1
  • 43
    • 4444353693 scopus 로고    scopus 로고
    • Kernel-based self-organized maps trained with supervised bias for gene expression data analysis
    • Imperial College Press
    • Papadimitriou, S. and Likothanassis, S.D. (2004). Kernel-based self-organized maps trained with supervised bias for gene expression data analysis. J. Bioinform. Comput. Biol. (JBCB), Imperial College Press, 1: 647-80.
    • (2004) J. Bioinform. Comput. Biol. (JBCB) , vol.1 , pp. 647-680
    • Papadimitriou, S.1    Likothanassis, S.D.2
  • 44
    • 37549000355 scopus 로고    scopus 로고
    • Efficient and interpretable fuzzy classifiers from data with support vector learning
    • Papadimitriou, S. and Terzidis, K. (2005). Efficient and interpretable fuzzy classifiers from data with support vector learning. Intelligent Data Analysis 9: 527-50.
    • (2005) Intelligent Data Analysis , vol.9 , pp. 527-550
    • Papadimitriou, S.1    Terzidis, K.2
  • 45
    • 34547163475 scopus 로고    scopus 로고
    • Scientific programming with Java classes supported with a scripting interpreter
    • Papadimitriou, S. (2007). Scientific programming with Java classes supported with a scripting interpreter. IET Software 1: 48-56.
    • (2007) IET Software , vol.1 , pp. 48-56
    • Papadimitriou, S.1
  • 46
    • 85142168406 scopus 로고    scopus 로고
    • Park, Y., Downing, S.R., Kim, D., Hahn, W., Li, C., Kantoff P. and Wei1, L.J. (2007). Simultaneous and exact interval estimates for the contrast of two groups based on an extremely high dimensional variable: application to mass spec data. Bioinformatics 23: 1451-8.
    • Park, Y., Downing, S.R., Kim, D., Hahn, W., Li, C., Kantoff P. and Wei1, L.J. (2007). Simultaneous and exact interval estimates for the contrast of two groups based on an extremely high dimensional variable: application to mass spec data. Bioinformatics 23: 1451-8.
  • 48
    • 3543058847 scopus 로고    scopus 로고
    • Mining mass-spectra for diagnosis and biomarker discovery of cerebral accidents
    • Prados, J., Kalousis, A., Allard, L., Carrette, O., Sanchez, J.C. and Hilario, M. (2004). Mining mass-spectra for diagnosis and biomarker discovery of cerebral accidents. Proteomics 4: 2320-32.
    • (2004) Proteomics , vol.4 , pp. 2320-2332
    • Prados, J.1    Kalousis, A.2    Allard, L.3    Carrette, O.4    Sanchez, J.C.5    Hilario, M.6
  • 50
    • 0141743615 scopus 로고    scopus 로고
    • Discriminant models for high-throughput proteomics mass spectrometer data
    • Purohit, P.V. and Rocke, D.M. (2003). Discriminant models for high-throughput proteomics mass spectrometer data. Proteomics 3: 1699-703.
    • (2003) Proteomics , vol.3 , pp. 1699-1703
    • Purohit, P.V.1    Rocke, D.M.2
  • 51
    • 0036791428 scopus 로고    scopus 로고
    • Boosted decision tree analysis of surface-enhanced laser desorption/ ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients
    • Qu, Y., Adam, B.L., Yasui, Y., Ward, M.D., Cazares, L.H., Schellhammer, P.F., Feng Z., Semmes, O.J., et al. (2002). Boosted decision tree analysis of surface-enhanced laser desorption/ ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 48: 1835-43.
    • (2002) Clin. Chem , vol.48 , pp. 1835-1843
    • Qu, Y.1    Adam, B.L.2    Yasui, Y.3    Ward, M.D.4    Cazares, L.H.5    Schellhammer, P.F.6    Feng, Z.7    Semmes, O.J.8
  • 52
    • 37548999959 scopus 로고    scopus 로고
    • Protein Fractionation Methods for Proteomics
    • eds. T. Veenstra and J. Yates Wiley-Liss, pp
    • Rabilloud, T. (2006). Protein Fractionation Methods for Proteomics. In Proteomics for Biological Discovery (eds. T. Veenstra and J. Yates) Wiley-Liss, pp 111.
    • (2006) Proteomics for Biological Discovery , pp. 111
    • Rabilloud, T.1
  • 55
    • 3843094964 scopus 로고    scopus 로고
    • Gradient-based manipulation of nonparametric entropy estimates
    • Schraudolph, N. (2004), Gradient-based manipulation of nonparametric entropy estimates. IEEE Trans. Neural Netw. 15: 828-37.
    • (2004) IEEE Trans. Neural Netw , vol.15 , pp. 828-837
    • Schraudolph, N.1
  • 56
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • Somorjai, R.L., Dolenko, B. and Baumgartner, R. (2003). Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions. Bioinformatics 19: 1484-91.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 57
    • 34347393745 scopus 로고    scopus 로고
    • Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: A multicohort cross-institutional study
    • Taguchi, F., Solomon, B., Gregorc, V., Roder, H., Gray, R., Kasahara, K., Nishio, M., Brahmer, J., et al. (2007). Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J. Natl. Cancer Inst. 99: 838-46.
    • (2007) J. Natl. Cancer Inst , vol.99 , pp. 838-846
    • Taguchi, F.1    Solomon, B.2    Gregorc, V.3    Roder, H.4    Gray, R.5    Kasahara, K.6    Nishio, M.7    Brahmer, J.8
  • 58
    • 0037434980 scopus 로고    scopus 로고
    • From genomics to proteomics
    • Tyers, M. and Mann, M. (2003). From genomics to proteomics. Nature 422: 193-7.
    • (2003) Nature , vol.422 , pp. 193-197
    • Tyers, M.1    Mann, M.2
  • 59
    • 0034187784 scopus 로고    scopus 로고
    • Clustering of the self-organized map
    • Vesanto, J. and Alhoniemi, E. (2000). Clustering of the self-organized map. IEEE Trans. Neural Netw. 11: 586-600.
    • (2000) IEEE Trans. Neural Netw , vol.11 , pp. 586-600
    • Vesanto, J.1    Alhoniemi, E.2
  • 60
    • 3943089139 scopus 로고    scopus 로고
    • Ovacheck: Lets not dismiss the concept
    • Villanueva, J. and Tempst, P. (2004). Ovacheck: lets not dismiss the concept. Nature 430: 611.
    • (2004) Nature , vol.430 , pp. 611
    • Villanueva, J.1    Tempst, P.2
  • 61
    • 0942265518 scopus 로고    scopus 로고
    • Diagnosis of ovarian cancer using decision tree classification of mass spectral data
    • Vlahou, A., Schorge, J.O., Gregory, B.W. and Coleman, R.L. (2003). Diagnosis of ovarian cancer using decision tree classification of mass spectral data. J. Biomed. Biotechnol. 5: 308-14.
    • (2003) J. Biomed. Biotechnol , vol.5 , pp. 308-314
    • Vlahou, A.1    Schorge, J.O.2    Gregory, B.W.3    Coleman, R.L.4
  • 64
    • 0019549613 scopus 로고    scopus 로고
    • Vo, K., Miller, M.J., Geiduscheck, P., Nielsen, C., Olson, A. and Xuong, N. Computer (1981). Analysis of two-dimensional gels. Anal. Biochem. 112: 258-71.
    • Vo, K., Miller, M.J., Geiduscheck, P., Nielsen, C., Olson, A. and Xuong, N. Computer (1981). Analysis of two-dimensional gels. Anal. Biochem. 112: 258-71.
  • 65
    • 33747838164 scopus 로고    scopus 로고
    • Normalization regarding non-random missing values in highthroughput mass spectrometry data
    • World Scientific Publishing
    • Wang, P., Tang, H., Zhang, H., Whiteaker, J., Paulovich, A.G. and Mcintosh, M. (2006). Normalization regarding non-random missing values in highthroughput mass spectrometry data. In Pacific Symposium on Biocomputing World Scientific Publishing 315-26.
    • (2006) Pacific Symposium on Biocomputing , pp. 315-326
    • Wang, P.1    Tang, H.2    Zhang, H.3    Whiteaker, J.4    Paulovich, A.G.5    Mcintosh, M.6
  • 67
    • 33845190394 scopus 로고    scopus 로고
    • Searching for biomarkers of heart failure in the mass spectra of blood plasma
    • Willingale, R., Jones, D.J., Lamb, J.H., Quinn, P., Farmer, P.B. and Ng, L.L. (2006). Searching for biomarkers of heart failure in the mass spectra of blood plasma. Proteomics 6: 5903-14.
    • (2006) Proteomics , vol.6 , pp. 5903-5914
    • Willingale, R.1    Jones, D.J.2    Lamb, J.H.3    Quinn, P.4    Farmer, P.B.5    Ng, L.L.6
  • 68
    • 0348143180 scopus 로고    scopus 로고
    • A random variance model for detection of differential gene expression in small microarray experiments
    • Wright, G. and Simon, R.M. (2003). A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19: 2448-55.
    • (2003) Bioinformatics , vol.19 , pp. 2448-2455
    • Wright, G.1    Simon, R.M.2
  • 69
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D., Williams, K., et al. (2003). Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19: 1636-43.
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3    McMurray, W.4    Mor, G.5    Stone, K.6    Ward, D.7    Williams, K.8
  • 70
    • 0346101457 scopus 로고    scopus 로고
    • An automated peak identification/calibration procedure for high-dimensional protein measures from mass spectrometers
    • Yasui, Y., McLerran, D., Adam, B., Winget, M., Thornquist, M. and Feng, Z. (2003a). An automated peak identification/calibration procedure for high-dimensional protein measures from mass spectrometers. J. Biomed. Biotechnol. 4: 242-8.
    • (2003) J. Biomed. Biotechnol , vol.4 , pp. 242-248
    • Yasui, Y.1    McLerran, D.2    Adam, B.3    Winget, M.4    Thornquist, M.5    Feng, Z.6
  • 71
    • 0142008803 scopus 로고    scopus 로고
    • A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection
    • Yasui, Y., Pepe, M., Thompson, M.L., Bao-ling, A., Wright, G., Qu, Y., Potter, J., Winget, M., et al. (2003b). A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4: 449-53.
    • (2003) Biostatistics , vol.4 , pp. 449-453
    • Yasui, Y.1    Pepe, M.2    Thompson, M.L.3    Bao-ling, A.4    Wright, G.5    Qu, Y.6    Potter, J.7    Winget, M.8
  • 72
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformation for gene expression data
    • Yeung, K., Fraley, C., Murua, A., Raftery, A. and Ruzzo, W. (2001). Model-based clustering and data transformation for gene expression data. Bioinformatics 17: 977-87.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.1    Fraley, C.2    Murua, A.3    Raftery, A.4    Ruzzo, W.5
  • 73
    • 34250025453 scopus 로고    scopus 로고
    • Sample preparation and bioinformatics in MALDI profiling of urinary proteins
    • Zerefos, P., Prados, J., Kossida, S., Kalousis, A. and Vlahou, A. (2007). Sample preparation and bioinformatics in MALDI profiling of urinary proteins. J. Chromat. B. 853: 20-30.
    • (2007) J. Chromat. B , vol.853 , pp. 20-30
    • Zerefos, P.1    Prados, J.2    Kossida, S.3    Kalousis, A.4    Vlahou, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.