메뉴 건너뛰기




Volumn 24, Issue 1, 2008, Pages 94-101

Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; AUTOMATION; CELL CYCLE PHASE; CELL LINE; CELL SHAPE; FLUORESCENCE MICROSCOPY; HUMAN; HUMAN CELL; IMAGE DISPLAY; IMAGE PROCESSING; INTERMETHOD COMPARISON; LEARNING ALGORITHM; ONLINE SYSTEM; PRIORITY JOURNAL; SUPPORT VECTOR MACHINE;

EID: 37549026179     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btm530     Document Type: Article
Times cited : (125)

References (41)
  • 1
    • 0642317020 scopus 로고    scopus 로고
    • Inhibitors of the G2 DNA damage checkpoint and their potential for cancer therapy
    • Anderson,H.J. et al. (2003) Inhibitors of the G2 DNA damage checkpoint and their potential for cancer therapy. Prog. Cell Cycle Res., 5, 423-430.
    • (2003) Prog. Cell Cycle Res , vol.5 , pp. 423-430
    • Anderson, H.J.1
  • 2
    • 1942518915 scopus 로고    scopus 로고
    • In vitro modeling of human tumour behaviour in drug discovery programmes
    • Baguley,B.C. and Marshall,E.S. (2004) In vitro modeling of human tumour behaviour in drug discovery programmes. Eur. J. Cancer, 40, 794-801.
    • (2004) Eur. J. Cancer , vol.40 , pp. 794-801
    • Baguley, B.C.1    Marshall, E.S.2
  • 3
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope image of HeLa cells
    • Boland,M.V. and Murphy,R.F. (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope image of HeLa cells. Bioinformatics, 17 1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 4
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of pattern characteristic of subcellular structures in fluorescence microscopy images
    • Boland,M.V. et al. (1998) Automated recognition of pattern characteristic of subcellular structures in fluorescence microscopy images. Cytometry, 33, 366-375.
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1
  • 5
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Borders,A. (2005) Fast kernel classifiers with online and active learning. J. Mach. Lean. Res., 6, 1579-1619.
    • (2005) J. Mach. Lean. Res , vol.6 , pp. 1579-1619
    • Borders, A.1
  • 6
    • 0029304709 scopus 로고
    • Linear time Euclidean distance transform algorithms
    • Breu,H. et al. (1995) Linear time Euclidean distance transform algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 17, 529-533.
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell , vol.17 , pp. 529-533
    • Breu, H.1
  • 7
    • 34249897787 scopus 로고    scopus 로고
    • A Support Vector Machine Classifier for recognizing mitotic subphases using high-content screening data
    • Charles,Y.T. et al. (2007) A Support Vector Machine Classifier for recognizing mitotic subphases using high-content screening data. J. Biomol. Screen., 12, 490-496.
    • (2007) J. Biomol. Screen , vol.12 , pp. 490-496
    • Charles, Y.T.1
  • 8
    • 33745835457 scopus 로고    scopus 로고
    • A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images
    • Chen,S.C. and Murphy,R.F. (2006) A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images. BMC Bioinformatics, 7, 90.
    • (2006) BMC Bioinformatics , vol.7 , pp. 90
    • Chen, S.C.1    Murphy, R.F.2
  • 9
    • 33645326241 scopus 로고    scopus 로고
    • Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy
    • Chen,X. et al. (2006) Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans. Biomed. Eng., 53, 762-766.
    • (2006) IEEE Trans. Biomed. Eng , vol.53 , pp. 762-766
    • Chen, X.1
  • 10
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes,C. and Vapnik,V. (1995) Support vector networks. Mach. Learn. 20, 273-297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 13444279879 scopus 로고    scopus 로고
    • P300 Modulates Nuclear Morphology in Prostate Cancer
    • Debes,J.D. et al. (2005) P300 Modulates Nuclear Morphology in Prostate Cancer. Cancer Res., 65, 708-712.
    • (2005) Cancer Res , vol.65 , pp. 708-712
    • Debes, J.D.1
  • 12
    • 0042698478 scopus 로고    scopus 로고
    • Therapeutic exploitation of checkpoint defects in cancer cells lacking p53 function
    • Dixon,H. et al. (2002) Therapeutic exploitation of checkpoint defects in cancer cells lacking p53 function. Cell Cycle, 1, 362-368.
    • (2002) Cell Cycle , vol.1 , pp. 362-368
    • Dixon, H.1
  • 13
    • 33746218517 scopus 로고    scopus 로고
    • Efficient optimization of support vector machine learning parameters for unbalanced datasets
    • Eitrich,T. and Lang,B. (2006) Efficient optimization of support vector machine learning parameters for unbalanced datasets. J. Comput. Appl. Math., 196, 377-427.
    • (2006) J. Comput. Appl. Math , vol.196 , pp. 377-427
    • Eitrich, T.1    Lang, B.2
  • 14
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Freund,Y. and Schapire,R.E. (1999) Large margin classification using the perceptron algorithm. Mach. Learn., 37, 277-296.
    • (1999) Mach. Learn , vol.37 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 5644302997 scopus 로고    scopus 로고
    • Mitotic cell recognition with hidden markov models
    • Gallardo,G. et al. (2004) Mitotic cell recognition with hidden markov models. Med. Imaging SPIE, 5367, 661-668.
    • (2004) Med. Imaging SPIE , vol.5367 , pp. 661-668
    • Gallardo, G.1
  • 16
    • 0005396750 scopus 로고    scopus 로고
    • utomatic capacity tuning of very large VC-dimension classifiers
    • Morgan Kaufmann, CA, pp
    • Guyon,I. et al.utomatic capacity tuning of very large VC-dimension classifiers. In Advances in Neural Information Processing Systems. Morgan Kaufmann, CA, pp. 5-155.
    • Advances in Neural Information Processing Systems , pp. 5-155
    • Guyon, I.1
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon,I. et al. (2002) Gene selection for cancer classification using support vector machines. Mach. Learn., 46, 389-422.
    • (2002) Mach. Learn , vol.46 , pp. 389-422
    • Guyon, I.1
  • 18
    • 0015680481 scopus 로고
    • Textural features for image classification
    • Haralick,R.M. et al. (1973) Textural features for image classification. IEEE Trans. SMC., 3, 610-621.
    • (1973) IEEE Trans. SMC , vol.3 , pp. 610-621
    • Haralick, R.M.1
  • 19
    • 84883832573 scopus 로고    scopus 로고
    • Automated analysis of the mitotic phases of human cells in 3D fluorescence microscopy image sequences, eds, Springer Berlin/Heidelberg, Copenhagen, DK, pp
    • Harder,N. et al. (2006) Automated analysis of the mitotic phases of human cells in 3D fluorescence microscopy image sequences. In Larsen,R. et al. (eds.) Proceedings of the MICCAI'06. Springer Berlin/Heidelberg, Copenhagen, DK, pp. 840-848.
    • (2006) Proceedings of the MICCAI'06 , pp. 840-848
    • Harder, N.1
  • 20
    • 0242628975 scopus 로고    scopus 로고
    • Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope image
    • Huang,K. et al. (2003) Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope image. Proc. SPIE, 4962, 307-318.
    • (2003) Proc. SPIE , vol.4962 , pp. 307-318
    • Huang, K.1
  • 21
    • 3543110224 scopus 로고    scopus 로고
    • Online learning with Kernels
    • Kivinen,J. et al. (2004) Online learning with Kernels. IEEE Trans. Signal Process., 52, 2165-2176.
    • (2004) IEEE Trans. Signal Process , vol.52 , pp. 2165-2176
    • Kivinen, J.1
  • 22
    • 0037991523 scopus 로고    scopus 로고
    • Online training of support vector classifier
    • Lau,K.W. and Wu,Q.H. (2003) Online training of support vector classifier. Pattern Recognit., 36, 1913-1920.
    • (2003) Pattern Recognit , vol.36 , pp. 1913-1920
    • Lau, K.W.1    Wu, Q.H.2
  • 23
    • 22944447138 scopus 로고    scopus 로고
    • Feature selection for multi-class problems using support vector machines
    • Li,G.Z. et al. (2004) Feature selection for multi-class problems using support vector machines. Lect. Notes Comput. Sci., 3157 292-300.
    • (2004) Lect. Notes Comput. Sci , vol.3157 , pp. 292-300
    • Li, G.Z.1
  • 24
    • 0348134935 scopus 로고    scopus 로고
    • A hybrid 3-D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks
    • Lin,G. et al. (2003) A hybrid 3-D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A, 56, 23-36.
    • (2003) Cytometry A , vol.56 , pp. 23-36
    • Lin, G.1
  • 25
    • 0347988265 scopus 로고    scopus 로고
    • Image analysis for automatic segmentation of cytoplasms and classification of Rac1 activation
    • Lindblad,J. et al. (2004) Image analysis for automatic segmentation of cytoplasms and classification of Rac1 activation. Cytometry A, 57, 22-33.
    • (2004) Cytometry A , vol.57 , pp. 22-33
    • Lindblad, J.1
  • 27
    • 0141921564 scopus 로고    scopus 로고
    • Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images
    • Murphy,R.F. et al. (2003) Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Signal Process., 35, 311-321.
    • (2003) J. VLSI Signal Process , vol.35 , pp. 311-321
    • Murphy, R.F.1
  • 28
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf,B. et al, eds, MIT Press, MA, pp
    • Platt,J. et al. (1999) Fast training of support vector machines using sequential minimal optimization. In Schölkopf,B. et al. (eds.) Advances in Kernel Methods-Support Vector Learning. MIT Press, MA, pp. 185-208.
    • (1999) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 29
    • 11144273669 scopus 로고
    • The perceptron: A probability model for information storage and organization in the brain
    • Rosenblatt,F. (1958) The perceptron: A probability model for information storage and organization in the brain. Psychol. Rev., 6, 386-408.
    • (1958) Psychol. Rev , vol.6 , pp. 386-408
    • Rosenblatt, F.1
  • 30
    • 33746087078 scopus 로고    scopus 로고
    • Online learning meets optimization in the dual
    • Carbonell,J.G. and Siekmann,J, eds, Springer Berlin/Heidelberg, Pittsburgh, PA, pp
    • Shalev-Shwartz,S. and Singer,Y. (2006) Online learning meets optimization in the dual. In Carbonell,J.G. and Siekmann,J. (eds.) Proceedings of the 19th Annual Conference on Learning Theory. Springer Berlin/Heidelberg, Pittsburgh, PA, pp. 423-437.
    • (2006) Proceedings of the 19th Annual Conference on Learning Theory , pp. 423-437
    • Shalev-Shwartz, S.1    Singer, Y.2
  • 31
    • 0032003008 scopus 로고    scopus 로고
    • An unbiased detector of curvilinear structures
    • Steger,C. (1998) An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal., 20, 113-125.
    • (1998) IEEE Trans. Pattern Anal , vol.20 , pp. 113-125
    • Steger, C.1
  • 32
    • 33644788489 scopus 로고    scopus 로고
    • Small molecules that delay S phase suppress a zebrafish bmyb mutant
    • Stern,H.M. et al. (2005) Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat. Chem. Biol., 1, 366-370.
    • (2005) Nat. Chem. Biol , vol.1 , pp. 366-370
    • Stern, H.M.1
  • 34
    • 0010864753 scopus 로고
    • Pattern recognition using generalized portrait method
    • Vapnik,V. and Lerner,A. (1963) Pattern recognition using generalized portrait method. Automat. Rem. Contr., 24, 774-780.
    • (1963) Automat. Rem. Contr , vol.24 , pp. 774-780
    • Vapnik, V.1    Lerner, A.2
  • 35
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An efficient algorithm based on immersion simulations
    • Vincent,L. and Soille,P. (1991) Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. PAMI 13, 583-598.
    • (1991) IEEE Trans. PAMI , vol.13 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 36
    • 0036428531 scopus 로고    scopus 로고
    • Algorithms for cytoplasm segmentation of fluorescence labelled cells
    • Wahlby,C. et al. (2002) Algorithms for cytoplasm segmentation of fluorescence labelled cells. Anal. Cell Pathol., 24, 101-111.
    • (2002) Anal. Cell Pathol , vol.24 , pp. 101-111
    • Wahlby, C.1
  • 37
    • 8444248846 scopus 로고    scopus 로고
    • Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition
    • Wang,M. et al. (2005) Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition. Protein Eng. Des. Sel., 17, 509-516.
    • (2005) Protein Eng. Des. Sel , vol.17 , pp. 509-516
    • Wang, M.1
  • 38
    • 33847140136 scopus 로고    scopus 로고
    • Wang.M. et al. (2007) Context based mixture model for cell phase identification in automated fluorescence microscopy. BMC Bioinformatics, 8, 32.
    • Wang.M. et al. (2007) Context based mixture model for cell phase identification in automated fluorescence microscopy. BMC Bioinformatics, 8, 32.
  • 39
    • 0032028944 scopus 로고    scopus 로고
    • Snakes, shapes, and gradient vector flow
    • Xu,C. and Prince,J. (1998) Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process., 7, 359-369.
    • (1998) IEEE Trans. Image Process , vol.7 , pp. 359-369
    • Xu, C.1    Prince, J.2
  • 40
    • 33847100200 scopus 로고    scopus 로고
    • An efficient system for optical microscopy cell image segmentation, tracking and cell phase identification
    • Atlanta, GA, pp
    • Yan,J. et al. (2006) An efficient system for optical microscopy cell image segmentation, tracking and cell phase identification. In Proceedings of IEEE ICIP. Atlanta, GA, pp. 1536-1537.
    • (2006) Proceedings of IEEE ICIP , pp. 1536-1537
    • Yan, J.1
  • 41
    • 85032752151 scopus 로고    scopus 로고
    • Informatics challenges of high-throughput microscopy
    • Zhou,X. and Wong,S.T.C. (2006) Informatics challenges of high-throughput microscopy. IEEE Signal Process. Mag., 23, 63-72.
    • (2006) IEEE Signal Process. Mag , vol.23 , pp. 63-72
    • Zhou, X.1    Wong, S.T.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.