메뉴 건너뛰기




Volumn 12, Issue 4, 2007, Pages 490-496

A support vector machine classifier for recognizing mitotic subphases using high-content screening data

Author keywords

Cell cycle; High content screening; Mitosis; Support vector machine

Indexed keywords

ARTICLE; CELL CYCLE; CELL STRUCTURE; COMPUTER PROGRAM; CONTROLLED STUDY; FEMALE; HUMAN; HUMAN CELL; MITOSIS; PRIORITY JOURNAL; SUPPORT VECTOR MACHINE; VALIDATION PROCESS;

EID: 34249897787     PISSN: 10870571     EISSN: 1552454X     Source Type: Journal    
DOI: 10.1177/1087057107300707     Document Type: Article
Times cited : (27)

References (33)
  • 4
    • 27544515607 scopus 로고    scopus 로고
    • The mitotic checkpoint in cancer and aging: What have mice taught us?
    • Baker DJ, Chen J., van Deursen JM: The mitotic checkpoint in cancer and aging: what have mice taught us? Curr Opin Cell Biol 2005 ; 17: 583-589.
    • (2005) Curr Opin Cell Biol , vol.17 , pp. 583-589
    • Baker, D.J.1    Chen, J.2    Van Deursen, J.M.3
  • 5
    • 2342639645 scopus 로고    scopus 로고
    • VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo
    • Harrington EA, Bebbington D., Moore J., Rasmussen RK, Ajose-Adeogun AO, Nakayama T.,, et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004 ; 10: 262-267.
    • (2004) Nat Med , vol.10 , pp. 262-267
    • Harrington, E.A.1    Bebbington, D.2    Moore, J.3    Rasmussen, R.K.4    Ajose-Adeogun, A.O.5    Nakayama, T.6
  • 6
    • 2342593974 scopus 로고    scopus 로고
    • Aurora kinases dawn as cancer drug targets
    • Sausville EA: Aurora kinases dawn as cancer drug targets. Nat Med 2004 ; 10: 234-235.
    • (2004) Nat Med , vol.10 , pp. 234-235
    • Sausville, E.A.1
  • 7
    • 12344288635 scopus 로고    scopus 로고
    • Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets
    • Eggert US, Kiger AA, Richter C., Perlman ZE, Perrimon N., Mitchison TJ,, et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol 2004 ; 2: e379.
    • (2004) PLoS Biol , vol.2 , pp. 379
    • Eggert, U.S.1    Kiger, A.A.2    Richter, C.3    Perlman, Z.E.4    Perrimon, N.5    Mitchison, T.J.6
  • 8
    • 12344250982 scopus 로고    scopus 로고
    • Small-molecule screening and profiling by using automated microscopy
    • Mitchison TJ: Small-molecule screening and profiling by using automated microscopy. Chembiochem 2005 ; 6: 33-39.
    • (2005) Chembiochem , vol.6 , pp. 33-39
    • Mitchison, T.J.1
  • 10
    • 85032751088 scopus 로고    scopus 로고
    • High content cellular imaging for drug development
    • Zhou XB, Wong Stc: High content cellular imaging for drug development. IEEE Signal Processing Magazine 2006 ; 23: 170-174.
    • (2006) IEEE Signal Processing Magazine , vol.23 , pp. 170-174
    • Zhou, X.B.1    Stc, W.2
  • 11
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of Hela cells
    • Boland MV, Murphy RF: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of Hela cells. Bioinformatics 2001 ; 17: 1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 12
    • 32644464457 scopus 로고    scopus 로고
    • Automatic detection of unstained viable cells in bright field images using a support vector machine with an improved training procedure
    • Long X., Cleveland WL, Yao YL: Automatic detection of unstained viable cells in bright field images using a support vector machine with an improved training procedure. Comput Biol Med 2006 ; 36: 339-362.
    • (2006) Comput Biol Med , vol.36 , pp. 339-362
    • Long, X.1    Cleveland, W.L.2    Yao, Y.L.3
  • 13
    • 13344280993 scopus 로고    scopus 로고
    • Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
    • Huang K., Murphy RF: Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics 2004 ; 5: 78.
    • (2004) BMC Bioinformatics , vol.5 , pp. 78
    • Huang, K.1    Murphy, R.F.2
  • 14
    • 24944545636 scopus 로고    scopus 로고
    • Cytomics and location proteomics: Automated interpretation of subcelluar patterns in fluorescence microscope images
    • Murphy RF: Cytomics and location proteomics: automated interpretation of subcelluar patterns in fluorescence microscope images. Cytometry A 2005 ; 67: 1-3.
    • (2005) Cytometry , vol.67 , pp. 1-3
    • Murphy, R.F.1
  • 15
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • Haussler D (ed): Pittsburgh: ACM Press
    • Boser BE, Guyon IM, Vapnik VN: A training algorithm for optimal margin classifiers. In Haussler D (ed): 5th Annual ACM Workshop on COLT. Pittsburgh: ACM Press, 1992: 144-152.
    • (1992) 5th Annual ACM Workshop on COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 16
    • 34249753618 scopus 로고
    • Support-vector networks. Machine
    • Cortes C., Vapnik V.: Support-vector networks. Machine Learning 1995 ; 20: 273-297.
    • (1995) Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 18
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N., Duffy N., Bednarski DW, Schummer M., Haussler D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000 ; 16: 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 19
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding CH, Dubchak I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 2001 ; 17: 349-358.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ch, D.1    Dubchak, I.2
  • 20
    • 27744481181 scopus 로고    scopus 로고
    • Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection
    • Mao Y., Zhou X., Pi D., Sun Y., Wong ST: Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection. J Biomed Biotechnol 2005 ; 2: 160-171.
    • (2005) J Biomed Biotechnol , vol.2 , pp. 160-171
    • Mao, Y.1    Zhou, X.2    Pi, D.3    Sun, Y.4    Wong, S.T.5
  • 21
    • 33745817438 scopus 로고    scopus 로고
    • Combining SVMs with various feature selection strategies
    • Guyon I, Gunn S, Nikravesh M, Zadeh L (eds): New York: Springer-Verlag
    • Chen Y-W., Lin C-J.: Combining SVMs with various feature selection strategies. In Guyon I, Gunn S, Nikravesh M, Zadeh L (eds): Feature Extraction, Foundations and Applications. New York: Springer-Verlag, 2006.
    • (2006) Feature Extraction, Foundations and Applications
    • Chen, Y.-W.1    Lin, C.-J.2
  • 22
    • 33646700012 scopus 로고    scopus 로고
    • Mutual information based feature selection in studying perturbation of dendritic structure caused by TSC2 inactivation
    • Zhou XB, Liu KY, Sabatini B., Wong Stc: Mutual information based feature selection in studying perturbation of dendritic structure caused by TSC2 inactivation. Neuroinformatics 2006 ; 4: 81-94.
    • (2006) Neuroinformatics , vol.4 , pp. 81-94
    • Zhou, X.B.1    Liu, K.Y.2    Sabatini, B.3    Stc, W.4
  • 24
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu CW, Lin CJ: A comparison of methods for multi-class support vector machines. IEEE Trans Neural Networks 2002 ; 13: 415-425.
    • (2002) IEEE Trans Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 25
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin R., Klautau A.: In defense of one-vs-all classification. J Machine Learning Res 2004 ; 5: 101-141.
    • (2004) J Machine Learning Res , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 26
    • 34249911416 scopus 로고    scopus 로고
    • http://www.csie.ntu.edu.tw/∼cjlin/bsvm/
  • 27
    • 34249905411 scopus 로고    scopus 로고
    • http://microarray.cpmc.columbia.edu/gist/
  • 28
    • 34249910552 scopus 로고    scopus 로고
    • http://five-percent-nation.mit.edu/SvmFu/
  • 29
    • 34249886243 scopus 로고    scopus 로고
    • http://www.esat.kuleuven.ac.be/sista/lssvmlab/
  • 30
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B, Burges C, Smola A (eds): Cambridge, MA: MIT Press
    • Joachims T.: Making large-scale SVM learning practical. In Schölkopf B, Burges C, Smola A (eds): Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning
    • Joachims, T.1
  • 33
    • 34249906681 scopus 로고    scopus 로고
    • http://cran.r-project.org/src/contrib/Descriptions/rpart.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.