메뉴 건너뛰기




Volumn 4472 LNCS, Issue , 2007, Pages 271-281

Stopping criteria for ensemble-based feature selection

Author keywords

ECOC; Feature selection; Multiple classifiers; RFE

Indexed keywords

BENCHMARKING; DATA REDUCTION; OPTIMAL SYSTEMS; RECURSIVE FUNCTIONS; SET THEORY;

EID: 37249017979     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-72523-7_28     Document Type: Conference Paper
Times cited : (9)

References (20)
  • 1
    • 0142120457 scopus 로고    scopus 로고
    • Vote Counting Measures for Ensemble Classifiers
    • Windeatt T., Vote Counting Measures for Ensemble Classifiers, Pattern Recognition 36(12), 2003, 2743-2756.
    • (2003) Pattern Recognition , vol.36 , Issue.12 , pp. 2743-2756
    • Windeatt, T.1
  • 2
    • 26444507921 scopus 로고    scopus 로고
    • Combining feature subsets in feature selection
    • Proc. 6th Int. Workshop Multiple Classifier Systems, Editors: N. Oza, R. Polikar, F. Roli, J. Kittler, Seaside, Calif. USA, June, Springer-Verlag
    • Skuruchina M. and Duin R. P. W., Combining feature subsets in feature selection, Proc. 6th Int. Workshop Multiple Classifier Systems, Editors: N. Oza, R. Polikar, F. Roli, J. Kittler, Seaside, Calif. USA, June, 2005, Lecture notes in computer science, Springer-Verlag, 165-174.
    • (2005) Lecture notes in computer science , pp. 165-174
    • Skuruchina, M.1    Duin, R.P.W.2
  • 4
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T. K., The random subspace method for constructing decision forests, IEEE Trans. Pattern Analysis and Machine Intelligence, 20(8) 1998, 832-844.
    • (1998) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 5
    • 0036643067 scopus 로고    scopus 로고
    • Estimating generalisation error two-class datasets using out-of-bag estimate
    • Bylander T, Estimating generalisation error two-class datasets using out-of-bag estimate, Machine Learning 48, 2002, 287-297.
    • (2002) Machine Learning , vol.48 , pp. 287-297
    • Bylander, T.1
  • 6
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva L. I. and Whitaker C. J., Measures of diversity in classifier ensembles, Machine Learning 51, 2003, 181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 7
    • 33750127404 scopus 로고    scopus 로고
    • Accuracy/Diversity and ensemble classifier design
    • Windeatt T., Accuracy/Diversity and ensemble classifier design, IEEE Trans. Neural Networks, 17(5), 2006, 1194-1211.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.5 , pp. 1194-1211
    • Windeatt, T.1
  • 8
    • 10444224738 scopus 로고    scopus 로고
    • Diversity Measures for Multiple Classifier System Analysis and Design
    • Windeatt T. Diversity Measures for Multiple Classifier System Analysis and Design, Information Fusion, 6 (1), 2004, 21-36
    • (2004) Information Fusion , vol.6 , Issue.1 , pp. 21-36
    • Windeatt, T.1
  • 9
    • 0037368938 scopus 로고    scopus 로고
    • Coding and Decoding Strategies for Multi-class Learning Problems
    • Windeatt T. Ghaderi R., Coding and Decoding Strategies for Multi-class Learning Problems, Information Fusion, 4(1), 2003, 11-21.
    • (2003) Information Fusion , vol.4 , Issue.1 , pp. 11-21
    • Windeatt, T.1    Ghaderi, R.2
  • 10
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R. and John G. H., Wrappers for feature subset selection, Artificial Intelligence Journal, special issue on relevance, 97 (1-2), 1997, 273-324.
    • (1997) Artificial Intelligence Journal , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 12
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L. and Liu H., Efficient feature selection via analysis of relevance and redundancy, Journal of Machine Learning Research 5, 2004, 1205-1224.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 13
    • 84944215019 scopus 로고    scopus 로고
    • Input Decimation ensembles: Decorrelation through dimensionality reduction
    • Proc. 2nd Int. Workshop Multiple Classifier Systems, Editors: J. Kittler, F. Roli, Cambridge, UK, July, Springer-Verlag
    • Oza N., and Turner K., Input Decimation ensembles: decorrelation through dimensionality reduction, Proc. 2nd Int. Workshop Multiple Classifier Systems, Editors: J. Kittler, F. Roli, , Cambridge, UK, July, 2001, Lecture notes in computer science, Springer-Verlag, 238-247.
    • (2001) Lecture notes in computer science , pp. 238-247
    • Oza, N.1    Turner, K.2
  • 14
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • Bryll R., Gutierrez-Osuna R. and Quek F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets, Pattern Recognition 36, 2003, 1291-1302.
    • (2003) Pattern Recognition , vol.36 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 15
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S. and Vapnik V., Gene selection for cancer classification using support vector machines, Machine Learning 46(1-3), 2002, 389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 17
    • 0034336503 scopus 로고    scopus 로고
    • Assessing the impact of input features in a feedforward neural network
    • Wang W., Jones P. and Partridge D. Assessing the impact of input features in a feedforward neural network, Neural Computing and Applications 9, 2000, 101-112.
    • (2000) Neural Computing and Applications , vol.9 , pp. 101-112
    • Wang, W.1    Jones, P.2    Partridge, D.3
  • 18
    • 0344961870 scopus 로고    scopus 로고
    • Numeric Sensitivity analysis applied to feedforward neural networks
    • Montana J. J. and Palmer A., Numeric Sensitivity analysis applied to feedforward neural networks, Neural Computing and Applications 12, 2003, 119-125.
    • (2003) Neural Computing and Applications , vol.12 , pp. 119-125
    • Montana, J.J.1    Palmer, A.2
  • 19
    • 37249067456 scopus 로고    scopus 로고
    • Prechelt L., Probenl: A set of neural network Benchmark Problems and Benchmarking Rules, Tech Report 21/94, Univ. Karlsruhe, Germany, 1994.
    • Prechelt L., Probenl: A set of neural network Benchmark Problems and Benchmarking Rules, Tech Report 21/94, Univ. Karlsruhe, Germany, 1994.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.