메뉴 건너뛰기




Volumn 62, Issue 3, 2006, Pages 199-215

A unified view on clustering binary data

Author keywords

Binary data; Clustering; Unified view

Indexed keywords

BINARY DATA; CLUSTERING; UNIFIED VIEW;

EID: 33644982700     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-005-5316-9     Document Type: Article
Times cited : (37)

References (43)
  • 2
    • 0034795233 scopus 로고    scopus 로고
    • Iterative Residual Rescaling: An analysis and generalization of {LSI}
    • Ando, R. K., & Lee, L. (2001). Iterative Residual Rescaling: An analysis and generalization of {LSI}. In Proceedings of the 24th {SIGIR} (pp. 154-162).
    • (2001) Proceedings of the 24th {SIGIR} , pp. 154-162
    • Ando, R.K.1    Lee, L.2
  • 4
    • 0031506140 scopus 로고    scopus 로고
    • Two variant axiom systems for presence/absence based dissimilarity coefficients
    • Baulieu, F.B. (1997). Two variant axiom systems for presence/absence based dissimilarity coefficients. Journal of Classification, 14, 159-170.
    • (1997) Journal of Classification , vol.14 , pp. 159-170
    • Baulieu, F.B.1
  • 6
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • Biernacki, C., & Govaert, G. (1997). Using the classification likelihood to choose the number of clusters. Computing Science and Statistics (pp. 451-457).
    • (1997) Computing Science and Statistics , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 7
    • 0002969516 scopus 로고
    • Probabilistic aspects in cluster analysis
    • O. Opitz (Ed.), . Berlin: Springer-verlag
    • Bock, H.-H. (1989). Probabilistic aspects in cluster analysis. In O. Opitz (Ed.), Conceptual and numerical analysis of data, (pp. 12-44). Berlin: Springer-verlag.
    • (1989) Conceptual and Numerical Analysis of Data , pp. 12-44
    • Bock, H.-H.1
  • 8
    • 0000306608 scopus 로고
    • Clustering criteria for discrete data and latent class models
    • Celeux, G., & Govaert, G. (1991). Clustering criteria for discrete data and latent class models. Journal of Classification, 8, 157-176.
    • (1991) Journal of Classification , vol.8 , pp. 157-176
    • Celeux, G.1    Govaert, G.2
  • 9
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195-212.
    • (1996) Journal of Classification , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 12
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • Dhillon, I.S., & Modha, D.S. (2001). Concept decompositions for large sparse text data using clustering. Machine Learning, 42, 143-175.
    • (2001) Machine Learning , vol.42 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 15
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • Guha, S., Rastogi, R., & Shim, K. (2000). ROCK: A robust clustering algorithm for categorical attributes. Information Systems, 25, 345-366.
    • (2000) Information Systems , vol.25 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 18
    • 0002453010 scopus 로고
    • Quantification method of classification processes: Concept of structural a-entropy
    • Havrda, J., & Charvat, F. (1967). Quantification method of classification processes: Concept of structural a-entropy. Kybernetika, 3, 30-35.
    • (1967) Kybernetika , vol.3 , pp. 30-35
    • Havrda, J.1    Charvat, F.2
  • 19
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2, 283-304.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 283-304
    • Huang, Z.1
  • 30
  • 33
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 39
    • 0002643871 scopus 로고
    • Clustering criteria and multivariate normal mixtures
    • Symons, M.J. (1981). Clustering criteria and multivariate normal mixtures. Biometrics, 37, 35-43.
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.