메뉴 건너뛰기




Volumn 4099 LNAI, Issue , 2006, Pages 423-433

Analysis on classification performance of rough set based reducts

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA REDUCTION; LEARNING SYSTEMS; MATHEMATICAL MODELS; SET THEORY;

EID: 33749543946     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11801603_46     Document Type: Conference Paper
Times cited : (12)

References (39)
  • 1
    • 0034268753 scopus 로고    scopus 로고
    • A handwritten numeral character classification using tolerant rough set
    • Kim D., Bang S. Y.: A handwritten numeral character classification using tolerant rough set. IEEE transactions on PAMI. 22 (2000) 923-937
    • (2000) IEEE Transactions on PAMI , vol.22 , pp. 923-937
    • Kim, D.1    Bang, S.Y.2
  • 2
    • 0035427240 scopus 로고    scopus 로고
    • Data classification based on tolerant rough set
    • Kim D.: Data classification based on tolerant rough set. Pattern recognition. 34 (2001) 1613-1624
    • (2001) Pattern Recognition , vol.34 , pp. 1613-1624
    • Kim, D.1
  • 4
    • 0032204205 scopus 로고    scopus 로고
    • Relational interpretations of neighborhood operators and rough set approximation operators
    • Yao Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information sciences. 111 (1998 ) 239-259
    • (1998) Information Sciences , vol.111 , pp. 239-259
    • Yao, Y.1
  • 5
    • 0036646071 scopus 로고    scopus 로고
    • Neighborhood operator systems and approximations
    • Wu W. Z., Zhang W. X.: Neighborhood operator systems and approximations. Information sciences. 144 (2002) 201-217
    • (2002) Information Sciences , vol.144 , pp. 201-217
    • Wu, W.Z.1    Zhang, W.X.2
  • 8
    • 0038667021 scopus 로고
    • Putting fuzzy sets and rough sets together
    • R. Slowiniski (Ed.), Kluwer Academic, Dordrecht
    • Dubois D., Prade H.: Putting fuzzy sets and rough sets together, in: R. Slowiniski (Ed.), Ittelligent Decision support, Kluwer Academic, Dordrecht, 1992, 203-232
    • (1992) Ittelligent Decision Support , pp. 203-232
    • Dubois, D.1    Prade, H.2
  • 10
    • 0037403099 scopus 로고    scopus 로고
    • Generalized fuzzy rough sets
    • Wu W., Mi J., Zhang W.: Generalized fuzzy rough sets. Information sciences. 151 (2003) 263-282
    • (2003) Information Sciences , vol.151 , pp. 263-282
    • Wu, W.1    Mi, J.2    Zhang, W.3
  • 12
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • Duntsch I., Gediga G.: Uncertainty measures of rough set prediction. Artificial intelligence. 106 (1998) 109-137
    • (1998) Artificial Intelligence , vol.106 , pp. 109-137
    • Duntsch, I.1    Gediga, G.2
  • 13
    • 0036027401 scopus 로고    scopus 로고
    • Rough sets, decision algorithms and Bayes' theorem
    • Pawlak Z.: Rough sets, decision algorithms and Bayes' theorem. European Journal of Operational Research. 136 (2002) 181-189
    • (2002) European Journal of Operational Research , vol.136 , pp. 181-189
    • Pawlak, Z.1
  • 14
    • 0027543613 scopus 로고
    • Variable precision rough set model
    • Ziarko W.: Variable Precision Rough Set Model. J. Computer and System Sciences. 46 (1993) 39-59
    • (1993) J. Computer and System Sciences , vol.46 , pp. 39-59
    • Ziarko, W.1
  • 16
    • 33645801018 scopus 로고    scopus 로고
    • Fuzzy probabilistic approximation spaces and their information measures
    • Hu Q., Yu D., and Xie Z.: Fuzzy probabilistic approximation spaces and their information measures. IEEE transactions on fuzzy systems. 14 (2006) 191-201
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , pp. 191-201
    • Hu, Q.1    Yu, D.2    Xie, Z.3
  • 18
    • 0029310113 scopus 로고
    • Learning in relational databases: A rough set approach
    • Hu X., Cercone N.: Learning in Relational Databases: A Rough Set Approach. Computational Intelligence. 11(1995) 323-338
    • (1995) Computational Intelligence , vol.11 , pp. 323-338
    • Hu, X.1    Cercone, N.2
  • 19
    • 0029305145 scopus 로고
    • Rough set reduction of attributes and their domains for neural networks
    • Jelonek J., Krawiec K., Slowinski R.: Rough set reduction of attributes and their domains for neural networks. Computational Intelligence. 11 (1995) 339-347
    • (1995) Computational Intelligence , vol.11 , pp. 339-347
    • Jelonek, J.1    Krawiec, K.2    Slowinski, R.3
  • 20
    • 11544350121 scopus 로고    scopus 로고
    • Analysis of attribute reduction strategies of rough set
    • Wang J., Miao D.: Analysis of attribute reduction strategies of rough set. Journal of computer science and technology. 13 (1998) 189-193
    • (1998) Journal of Computer Science and Technology , vol.13 , pp. 189-193
    • Wang, J.1    Miao, D.2
  • 21
    • 0042656300 scopus 로고
    • Dynamic reducts as a tool for extracting laws from decision tables
    • Springer-Verlag
    • Bazan J. G., Skowron A., and Synak P.: Dynamic reducts as a tool for extracting laws from decision tables. LNAI, vol. 869, pp.346-355. Springer-Verlag, 1994
    • (1994) LNAI , vol.869 , pp. 346-355
    • Bazan, J.G.1    Skowron, A.2    Synak, P.3
  • 23
    • 0036456212 scopus 로고    scopus 로고
    • Fuzzy-rough sets for descriptive dimensionality reduction
    • Jensen R., Shen Q.: Fuzzy-rough sets for descriptive dimensionality reduction. FUZZ-IEEE'02. Vol.1, 12-17, pp: 29-34
    • FUZZ-IEEE'02 , vol.1 , Issue.12-17 , pp. 29-34
    • Jensen, R.1    Shen, Q.2
  • 24
    • 0348170835 scopus 로고    scopus 로고
    • Fuzzy-rough attribute reduction with application to web categorization
    • Jensen R., Shen Q.: Fuzzy-rough attribute reduction with application to web categorization. Fuzzy sets and systems. 141 (2004) 469-485
    • (2004) Fuzzy Sets and Systems , vol.141 , pp. 469-485
    • Jensen, R.1    Shen, Q.2
  • 25
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Shen Q., Jensen R.: Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern recognition. 37 (2004) 1351-1363
    • (2004) Pattern Recognition , vol.37 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 26
    • 17444379002 scopus 로고    scopus 로고
    • On fuzzy-rough sets approach to feature selection
    • Bhatt R. B., Gopal M.: On fuzzy-rough sets approach to feature selection. Pattern recognition letters. 26 (2005) 965-975
    • (2005) Pattern Recognition Letters , vol.26 , pp. 965-975
    • Bhatt, R.B.1    Gopal, M.2
  • 28
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy rough techniques
    • Hu Q. H., Yu D. R., Xie Z. X.: Information-preserving hybrid data reduction based on fuzzy rough techniques. Pattern recognition letters. 27 (2006) 414-423
    • (2006) Pattern Recognition Letters , vol.27 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 32
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzyrough based approaches
    • Jensen R., Shen Q.: Semantics-preserving dimensionality reduction: rough and fuzzyrough based approaches. IEEE trans. on knowl. and data engin. 16 (2004) 1457-1471
    • (2004) IEEE Trans. on Knowl. and Data Engin. , vol.16 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 33
    • 4444310339 scopus 로고    scopus 로고
    • Rough set approach for attribute reduction and rule generation: A case of patients with suspected breast cancer
    • Hassanien E.: Rough Set Approach for Attribute Reduction and Rule Generation: A Case of Patients With Suspected Breast Cancer. Journal of the American society for information science and technology. 55 (2004) 954-962
    • (2004) Journal of the American Society for Information Science and Technology , vol.55 , pp. 954-962
    • Hassanien, E.1
  • 34
    • 22844456607 scopus 로고    scopus 로고
    • The role of Occam's razor in knowledge discovery
    • Domingos P.: The role of Occam's razor in knowledge discovery. Data mining and knowledge discovery. 3 (1999) 409-425
    • (1999) Data Mining and Knowledge Discovery , vol.3 , pp. 409-425
    • Domingos, P.1
  • 36
    • 4544223395 scopus 로고    scopus 로고
    • Using rough set theory and database operations to construct a good ensemble of classifiers for data mining applications
    • Hu X.: Using rough set theory and database operations to construct a good ensemble of classifiers for data mining applications. 2001 ICDM. 233-240.
    • 2001 ICDM , pp. 233-240
    • Hu, X.1
  • 38
    • 33646005516 scopus 로고    scopus 로고
    • Constructing rough decision forests
    • D. Slezak et al. (Eds.) RSFDGrC 2005
    • Hu Q. H., Yu D. R., Wang M. Y.: Constructing rough decision forests. D. Slezak et al. (Eds.): RSFDGrC 2005, LNAI. 3642 (2005) 147-156
    • (2005) LNAI , vol.3642 , pp. 147-156
    • Hu, Q.H.1    Yu, D.R.2    Wang, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.