-
1
-
-
0032164821
-
Modeling statistical dopant fluctuations in MOS transistors
-
P. A. Stolk, F. P. Widdershoven, and D. B. M. Klaassen, "Modeling statistical dopant fluctuations in MOS transistors," IEEE TED, vol. 45, no. 9, pp. 1960-1971, 1998.
-
(1998)
IEEE TED
, vol.45
, Issue.9
, pp. 1960-1971
-
-
Stolk, P.A.1
Widdershoven, F.P.2
Klaassen, D.B.M.3
-
2
-
-
84860357717
-
Models of process variations in device and interconnect
-
Chapter 6, pp, IEEE Press
-
D. Boning and S. Nassif, "Models of process variations in device and interconnect," Design of High-Performance Microprocessor Circuit, Chapter 6, pp. 98-115, IEEE Press, 2000.
-
(2000)
Design of High-Performance Microprocessor Circuit
, pp. 98-115
-
-
Boning, D.1
Nassif, S.2
-
3
-
-
0036575868
-
Impact of spatial intrachip gate length variability on the performance of high-speed digital circuits
-
M. Orshansky, K. Milor, P. Chen, K. Keutzer, and C. Hu, "Impact of spatial intrachip gate length variability on the performance of high-speed digital circuits," TCAD, vol. 21, pp. 544-553, 2002.
-
(2002)
TCAD
, vol.21
, pp. 544-553
-
-
Orshansky, M.1
Milor, K.2
Chen, P.3
Keutzer, K.4
Hu, C.5
-
4
-
-
0036049629
-
A general probabilistic framework for worst case timing analysis
-
Jun
-
M. Orshansky and K. Keutzer, "A general probabilistic framework for worst case timing analysis," DAC, pp. 556-561, Jun. 2002
-
(2002)
DAC
, pp. 556-561
-
-
Orshansky, M.1
Keutzer, K.2
-
5
-
-
27944470962
-
Statistical timing of digital integrated circuits
-
C. Viswesvariah, "Statistical timing of digital integrated circuits," ISSCC, 2004.
-
(2004)
ISSCC
-
-
Viswesvariah, C.1
-
6
-
-
27944460031
-
Mapping statistical process variations toward circuit performance variability: An Analytical Modeling Approach
-
Y. Cao and L. Clark, "Mapping statistical process variations toward circuit performance variability: An Analytical Modeling Approach," DAC, pp. 658-663, 2005.
-
(2005)
DAC
, pp. 658-663
-
-
Cao, Y.1
Clark, L.2
-
7
-
-
0031078092
-
A physical and Scalable I-V Model in BSIM3v3 for Analog /Digital Circuit Simulation
-
Feb
-
Y. Cheng, et al., "A physical and Scalable I-V Model in BSIM3v3 for Analog /Digital Circuit Simulation," IEEE Trans. Electron Devices, vol. 44, no. 2, pp. 277-287, Feb. 1997.
-
(1997)
IEEE Trans. Electron Devices
, vol.44
, Issue.2
, pp. 277-287
-
-
Cheng, Y.1
-
8
-
-
33947170507
-
PSP: An advanced surface-potential-based MOSFET model for circuit simulation
-
Sep
-
G. Gildenblat, et al., "PSP: an advanced surface-potential-based MOSFET model for circuit simulation," IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 1979-1993, Sep. 2006,
-
(2006)
IEEE Trans. Electron Devices
, vol.53
, Issue.9
, pp. 1979-1993
-
-
Gildenblat, G.1
-
9
-
-
0346148499
-
SOI transistor model for fast transient simulation
-
Nov
-
D. Nadezhin, et al., "SOI transistor model for fast transient simulation," ICCAD, pp 120-127, Nov. 2003.
-
(2003)
ICCAD
, pp. 120-127
-
-
Nadezhin, D.1
-
10
-
-
0025415048
-
Alpha-power law MOSFET model and its application to CMOS inverter delay and other formulas
-
Apr
-
T. Sakurai and A. R. Newton, "Alpha-power law MOSFET model and its application to CMOS inverter delay and other formulas," JSSC, vol. 25, no. 2, pp. 584-594, Apr. 1990.
-
(1990)
JSSC
, vol.25
, Issue.2
, pp. 584-594
-
-
Sakurai, T.1
Newton, A.R.2
-
11
-
-
0036923355
-
The effective drive current in CMOS Inverters
-
M. H. Na, E.J. Nowak, W.Haensch, and J. Cai, "The effective drive current in CMOS Inverters," IEDM, pp. 121-124, 2004
-
(2004)
IEDM
, pp. 121-124
-
-
Na, M.H.1
Nowak, E.J.2
Haensch, W.3
Cai, J.4
-
12
-
-
34548342130
-
-
BSIM4 MOSFET Model - User's Manual, 2006.
-
BSIM4 MOSFET Model - User's Manual, 2006.
-
-
-
-
13
-
-
33750600861
-
New generation of predictive technology model for sub-45nm early design exploration
-
Nov
-
W. Zhao and Y. Cao, "New generation of predictive technology model for sub-45nm early design exploration," IEEE Trans. Electron Devices, vol. 53, no. 11, pp. 2816-2823, Nov. 2006.
-
(2006)
IEEE Trans. Electron Devices
, vol.53
, Issue.11
, pp. 2816-2823
-
-
Zhao, W.1
Cao, Y.2
|