메뉴 건너뛰기




Volumn 13, Issue 24, 2007, Pages 6828-6840

Towards a rational design of ruthenium CO2 hydrogenation catalysts by ab initio metadynamics

Author keywords

Carbon dioxide fixation; Density functional calculations; Hydrogenation; Molecular dynamics; Ruthenium

Indexed keywords

ACTIVATION ENERGY; CARBON DIOXIDE; CATALYSTS; COMPUTER SIMULATION; FREE ENERGY; HYDROGENATION;

EID: 34548251818     PISSN: 09476539     EISSN: 15213765     Source Type: Journal    
DOI: 10.1002/chem.200700254     Document Type: Article
Times cited : (61)

References (72)
  • 3
    • 34548264356 scopus 로고    scopus 로고
    • Kyoto Protocol to the United Nations Framework Convention on Climate Change. Kyoto
    • Kyoto Protocol to the United Nations Framework Convention on Climate Change. Kyoto, 1997.
    • (1997)
  • 4
    • 0038610460 scopus 로고    scopus 로고
    • Eds, J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer. P. J. van der Linden. X. Dai, K. Maskell. C. A. Johnson, Cambridge University Press, Cambridge
    • Climate Change 2001: The Scientific Basis, (Eds.: J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer. P. J. van der Linden. X. Dai, K. Maskell. C. A. Johnson). Cambridge University Press, Cambridge. 2001.
    • (2001) Climate Change 2001: The Scientific Basis
  • 7
    • 0035323783 scopus 로고    scopus 로고
    • H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau. E. J. Beckman. A. T. Bell. J. E. Bercaw. C. Creutz. E. Dinjus. D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert. E. Fujita, D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller. G. J. Kubas, H. H. Kung. J. E. Lyons. L. E. Manzer, T. J. Marks. K. Morokuma. K. M. Nicholas, R. Periana. L. Que. J. Rostrup-Nielson. W. M. H. Sachtler, L. D. Schmidt, A. Sen. G. A. Somorjai. P. C. Stair. B. R. Stults, W. Tumas, Chem. Rev. 2001, 101, 953-996.
    • H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau. E. J. Beckman. A. T. Bell. J. E. Bercaw. C. Creutz. E. Dinjus. D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert. E. Fujita, D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller. G. J. Kubas, H. H. Kung. J. E. Lyons. L. E. Manzer, T. J. Marks. K. Morokuma. K. M. Nicholas, R. Periana. L. Que. J. Rostrup-Nielson. W. M. H. Sachtler, L. D. Schmidt, A. Sen. G. A. Somorjai. P. C. Stair. B. R. Stults, W. Tumas, Chem. Rev. 2001, 101, 953-996.
  • 43
    • 34447534053 scopus 로고
    • Copyright IBM Corp
    • CPMD, Stuttgart
    • CPMD. Copyright IBM Corp., 1990-2006; Copyright MPI für Festkörperforschung, Stuttgart, 1997 - 2001: http://www.cpmd.org.
    • (1990) Copyright MPI für Festkörperforschung , vol.1997 - 2001
  • 50
    • 34548218900 scopus 로고    scopus 로고
    • Gaussian 03, Revision C.02. M. J. Frisch. G. W. Trucks, H. B. Schlegel, G. E. Scuseria. M. A. Robb. J. R. Cheeseman. J. A. Montgomery. Jr, T. Vreven, K. N. Kudin. J. C. Burant, J. M. Millam, S. S. Iyen-gar. J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota. R. Fukuda, J. Hasegawa. M. Ishida, T. Nakajima, Y. Honda, O. Kitao. H. Nakai, M. Klene, X. Li. J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev. A. J. Austin. R. Cammi. C. Pomelli, J. Ochterski. P. Y. Ayala. K. Morokuma, G. A. Voth. P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick. A. D. Rabuck, K. Raghavachari, J. B. Foresman. J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford. J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox. T. Keith. M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Cha
    • Gaussian 03, Revision C.02. M. J. Frisch. G. W. Trucks, H. B. Schlegel, G. E. Scuseria. M. A. Robb. J. R. Cheeseman. J. A. Montgomery. Jr., T. Vreven, K. N. Kudin. J. C. Burant, J. M. Millam, S. S. Iyen-gar. J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota. R. Fukuda, J. Hasegawa. M. Ishida, T. Nakajima, Y. Honda, O. Kitao. H. Nakai, M. Klene, X. Li. J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev. A. J. Austin. R. Cammi. C. Pomelli, J. Ochterski. P. Y. Ayala. K. Morokuma, G. A. Voth. P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick. A. D. Rabuck, K. Raghavachari, J. B. Foresman. J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford. J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox. T. Keith. M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, B. Chen, M.W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2004.
  • 52
    • 34548210582 scopus 로고    scopus 로고
    • Field and co-workers reported a higher trans isomer concentration (ca. 7.7%) in toluene at 240 K, see ref. [51].
    • Field and co-workers reported a higher trans isomer concentration (ca. 7.7%) in toluene at 240 K, see ref. [51].
  • 53
    • 34548274706 scopus 로고    scopus 로고
    • Note that the minimum appearing at d(C-H) = 2.5 Å does not really correspond to a highly probable configuration, but is an effect of the confinement potential set at this distance.
    • Note that the minimum appearing at d(C-H) = 2.5 Å does not really correspond to a highly probable configuration, but is an effect of the confinement potential set at this distance.
  • 55
    • 34548240938 scopus 로고    scopus 로고
    • The backward reaction (6→5) takes place in the absence of base, which would otherwise extract the dihydrogen-bonded formic acid from the catalyst and promote the reaction by shifting the equilibrium towards 5→6
    • The backward reaction (6→5) takes place in the absence of base, which would otherwise extract the dihydrogen-bonded formic acid from the catalyst and promote the reaction by shifting the equilibrium towards 5→6.
  • 56
    • 0001346445 scopus 로고    scopus 로고
    • This process is similar to the reported ligand displacement by molecular H2. see A. Vigalok, Y. BenDavid, D. Milstein, Organometallics 1996, 15, 1839-1844;
    • 2. see A. Vigalok, Y. BenDavid, D. Milstein, Organometallics 1996, 15, 1839-1844;
  • 63
    • 0033581551 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 1999, 38, 3047-3050.
    • (1999) Chem. Int. Ed , vol.38 , pp. 3047-3050
    • Angew1
  • 70
    • 34548272761 scopus 로고    scopus 로고
    • The minimum corresponding to 8 is likely to be owing to the wall potential placed at 0.08 with respect to CN(O). On the other hand, the static DFT approach indicates that complex 8 (Figure 7) is the transition state (see ref. [21]), which confirms the apparent minimum of 8 as an artifact.
    • The minimum corresponding to 8 is likely to be owing to the wall potential placed at 0.08 with respect to CN(O). On the other hand, the static DFT approach indicates that complex 8 (Figure 7) is the transition state (see ref. [21]), which confirms the apparent minimum of 8 as an artifact.
  • 71
    • 34548227054 scopus 로고    scopus 로고
    • The enhancement of the instability of 6 may be caused by the wall potential applied to CN(O), which might hinder the formation of a more stable dihydrogen-bonded complex.
    • The enhancement of the instability of 6 may be caused by the wall potential applied to CN(O), which might hinder the formation of a more stable dihydrogen-bonded complex.
  • 72
    • 34548246681 scopus 로고    scopus 로고
    • The relative stabilities of the complexes shown in Scheme 2 cannot be compared as a result of some biases in the stabilities introduced by simulation parameters, such as wall potentials. The potential energies obtained by the static methods can be found in ref. [21].
    • The relative stabilities of the complexes shown in Scheme 2 cannot be compared as a result of some biases in the stabilities introduced by simulation parameters, such as wall potentials. The potential energies obtained by the static methods can be found in ref. [21].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.