메뉴 건너뛰기




Volumn , Issue , 2005, Pages 249-255

Robust boosting and its relation to bagging

Author keywords

Bagging; Boosting; Robust Fitting

Indexed keywords

BAGGING; BOOSTING; FUNCTION SPACE; ROBUST FITTING;

EID: 32344442047     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1081870.1081900     Document Type: Conference Paper
Times cited : (17)

References (20)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: bagging, boosting and variants. Machine Learning, 36(1/2):105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 33745834241 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science.
    • C. Blake and C. Merz. Repository of machine learning databases. [http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science., 1998.
    • (1998) Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. Annals of Statistics, 26(3):801:849, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.3
    • Breiman, L.1
  • 9
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In European Conference on Computational Learning Theory, pages 23-37, 1995.
    • (1995) European Conference on Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.2
  • 10
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 2001.
    • (2001) Annals of Statistics , vol.29 , Issue.5
    • Friedman, J.1
  • 11
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28:337-407, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • P. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1):73:101, 1964.
    • (1964) Annals of Mathematical Statistics , vol.35 , Issue.1 , pp. 101
    • Huber, P.1
  • 20
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: a new explanation for the effectiveness of voting methods. Annals of Statistics, 26:1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.