-
2
-
-
34147167068
-
-
Zhou, J.; Burgess, K. Angew. Chem., Int. Ed. 2007, 46, 1129.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 1129
-
-
Zhou, J.1
Burgess, K.2
-
3
-
-
14844330075
-
-
Novak, T.; Tan, Z.; Liang, B.; Negishi, E.-i. J. Am. Chem. Soc. 2005, 127, 2838.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 2838
-
-
Novak, T.1
Tan, Z.2
Liang, B.3
Negishi, E.-I.4
-
6
-
-
33749010316
-
-
(c) Johnson, J. B.; Yu, R. T.; Fink, P.; Bercot, E. A.; Rovis, T. Org. Lett. 2006, 8, 4307.
-
(2006)
Org. Lett
, vol.8
, pp. 4307
-
-
Johnson, J.B.1
Yu, R.T.2
Fink, P.3
Bercot, E.A.4
Rovis, T.5
-
7
-
-
33847613473
-
-
(d) Johnson, J. B; Bercot, E. A.; Rowley, J. M.; Coates, G. W.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 2718.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 2718
-
-
Johnson, J.B.1
Bercot, E.A.2
Rowley, J.M.3
Coates, G.W.4
Rovis, T.5
-
8
-
-
0001559029
-
-
(a) Jabri, N.; Alexakis, A.; Normant, J. F. Tetrahedron 1986, 42, 1369.-
-
(1986)
Tetrahedron
, vol.42
, pp. 1369
-
-
Jabri, N.1
Alexakis, A.2
Normant, J.F.3
-
10
-
-
0035903581
-
-
(c) Goossen, L. J.; Ghosh, K. Angew. Chem., Int. Ed. 2001, 40, 3458.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 3458
-
-
Goossen, L.J.1
Ghosh, K.2
-
12
-
-
0038646267
-
-
(e) Cacchi, S. Fabrizi, G.; Gavazza, F.; Goggiamani, A. Org. Lett. 2003, 5, 289.
-
(2003)
Org. Lett
, vol.5
, pp. 289
-
-
Cacchi, S.1
Fabrizi, G.2
Gavazza, F.3
Goggiamani, A.4
-
14
-
-
3142755110
-
-
(g) Yamane, M.; Uera, K.; Narasaka, K. Chem. Lett. 2004, 33, 424.
-
(2004)
Chem. Lett
, vol.33
, pp. 424
-
-
Yamane, M.1
Uera, K.2
Narasaka, K.3
-
15
-
-
0842264108
-
-
(h) Kazmierski, I.; Bastienne, M.; Gosmini, C.; Paris, J.-M.; Perichon, J. J. Org. Chem. 2004, 69, 936.
-
(2004)
J. Org. Chem
, vol.69
, pp. 936
-
-
Kazmierski, I.1
Bastienne, M.2
Gosmini, C.3
Paris, J.-M.4
Perichon, J.5
-
16
-
-
33746356239
-
-
(i) Xin, B.; Zhang, Y.; Cheng, K. J. Org. Chem. 2006, 71, 5725.
-
(2006)
J. Org. Chem
, vol.71
, pp. 5725
-
-
Xin, B.1
Zhang, Y.2
Cheng, K.3
-
17
-
-
0036533201
-
-
(j) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Organomet. Chem. 2002, 648, 297.
-
(2002)
J. Organomet. Chem
, vol.648
, pp. 297
-
-
Oguma, K.1
Miura, M.2
Satoh, T.3
Nomura, M.4
-
18
-
-
33750488411
-
-
(k) Hong, Y.-T.; Barchuk, A.; Krische, M. J. Angew. Chem., Int. Ed. 2006, 45, 6885.
-
(2006)
Angew. Chem., Int. Ed
, vol.45
, pp. 6885
-
-
Hong, Y.-T.1
Barchuk, A.2
Krische, M.J.3
-
20
-
-
34250722048
-
-
(b) Johnson, J. B.; Bercot, E. A.; Williams, C. M.; Rovis, T. Angew. Chem., Int. Ed. 2007, 46, 4514.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 4514
-
-
Johnson, J.B.1
Bercot, E.A.2
Williams, C.M.3
Rovis, T.4
-
21
-
-
0037087671
-
-
For asymmetric arylation of glutaric anhydrides using stoichiometric quantities of sparteine, see
-
(c) For asymmetric arylation of glutaric anhydrides using stoichiometric quantities of sparteine, see: Shintani, R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 1057.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 1057
-
-
Shintani, R.1
Fu, G.C.2
-
22
-
-
0036353294
-
-
3,5-Dimethyl glutaric anhydride may be prepared in 35% over three steps: Paquette, L. A.; Boulet, S. L. Synthesis 2002, 888.
-
3,5-Dimethyl glutaric anhydride may be prepared in 35% over three steps: Paquette, L. A.; Boulet, S. L. Synthesis 2002, 888.
-
-
-
-
23
-
-
33746442416
-
-
For reviews including the asymmetric alcoholysis of cyclic anhydrides, see: a
-
For reviews including the asymmetric alcoholysis of cyclic anhydrides, see: (a) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765.
-
(1999)
J. Chem. Soc., Perkin Trans. 1
, pp. 1765
-
-
Willis, M.C.1
-
24
-
-
0041378031
-
-
(b) Cheng, Y.; McDaid, P.; Deng, L. Chem. Rev. 2003, 103, 2965.
-
(2003)
Chem. Rev
, vol.103
, pp. 2965
-
-
Cheng, Y.1
McDaid, P.2
Deng, L.3
-
25
-
-
4143136647
-
-
(c) Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621.
-
(2004)
Acc. Chem. Res
, vol.37
, pp. 621
-
-
Tian, S.-K.1
Chen, Y.2
Hang, J.3
Tang, L.4
McDaid, P.5
Deng, L.6
-
26
-
-
34547669136
-
-
Our previously reported Pd-JOSIPHOS system (ref 6a) is not effective with glutaric anhydrides; sp3-nucleophiles are ineffective, while Ph 2Zn adds to 1 in 70% yield and 45% ee; see: Bercot, E. A. Ph.D. Thesis, Colorado State University, 2005
-
2Zn adds to 1 in 70% yield and 45% ee; see: Bercot, E. A. Ph.D. Thesis, Colorado State University, 2005.
-
-
-
-
27
-
-
0037243669
-
-
For a review of Rh-catalyzed C-C bond forming reactions with organometallic nucleophiles, see: a
-
For a review of Rh-catalyzed C-C bond forming reactions with organometallic nucleophiles, see: (a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.
-
(2003)
Chem. Rev
, vol.103
, pp. 169
-
-
Fagnou, K.1
Lautens, M.2
-
28
-
-
33644946956
-
-
Also see: b
-
Also see: (b) Nishimura, T.; Yasuhara, Y.; Hayashi, T. Org. Lett. 2006, 8, 979.
-
(2006)
Org. Lett
, vol.8
, pp. 979
-
-
Nishimura, T.1
Yasuhara, Y.2
Hayashi, T.3
-
29
-
-
33748227479
-
-
Phosphinooxazoline references: (a) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566.
-
Phosphinooxazoline references: (a) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566.
-
-
-
-
31
-
-
0027196559
-
-
(c) Dawson, G. J.; Frost, C. G.; Williams, J. M. J; Coote, S. J. Tetrahedron Lett. 1993, 34, 3149.
-
(1993)
Tetrahedron Lett
, vol.34
, pp. 3149
-
-
Dawson, G.J.1
Frost, C.G.2
Williams, J.M.J.3
Coote, S.J.4
-
33
-
-
34547680338
-
-
Catalyst loading may be reduced to 2.5 mol, 87, 86% ee, 5 h and 1 mol, 56, 85% ee, 24 h
-
Catalyst loading may be reduced to 2.5 mol % (87%, 86% ee, 5 h) and 1 mol % (56%, 85% ee, 24 h).
-
-
-
-
34
-
-
34547691486
-
-
For catalyst optimization and absolute stereochemistry assignment, see Supporting Information
-
For catalyst optimization and absolute stereochemistry assignment, see Supporting Information.
-
-
-
-
35
-
-
34547662393
-
-
For the majority of substrates, elevated temperatures (50°C) were required for reactivity (e.g., for 2d 25°C, 26% yield, 86% ee; 50°C, 70% yield, 90% ee).
-
For the majority of substrates, elevated temperatures (50°C) were required for reactivity (e.g., for 2d 25°C, 26% yield, 86% ee; 50°C, 70% yield, 90% ee).
-
-
-
-
36
-
-
34547683939
-
-
The reaction proceeds in a cleaner fashion if the Grignard is prepared in situ to avoid byproducts arising from oxidation of the organometallic
-
The reaction proceeds in a cleaner fashion if the Grignard is prepared in situ to avoid byproducts arising from oxidation of the organometallic.
-
-
-
-
37
-
-
34547669135
-
-
Nucleophiles for 2g,h formed by direct Zn-I exchange: Rozema, M. J.; AchyuthaRao, S.; Knochel, P. J. Org. Chem. 1992, 57, 1956.
-
Nucleophiles for 2g,h formed by direct Zn-I exchange: Rozema, M. J.; AchyuthaRao, S.; Knochel, P. J. Org. Chem. 1992, 57, 1956.
-
-
-
-
39
-
-
34547662394
-
-
7 was isolated as its Bn ester due to the instability of the acid.
-
7 was isolated as its Bn ester due to the instability of the acid.
-
-
-
-
40
-
-
33947086608
-
-
Hutchins, R. O.; Milewski, C. A.; Maryanoff, B. E. J. Am. Chem. Soc. 1973, 95, 3662.
-
(1973)
J. Am. Chem. Soc
, vol.95
, pp. 3662
-
-
Hutchins, R.O.1
Milewski, C.A.2
Maryanoff, B.E.3
-
41
-
-
12344318574
-
-
Bercot, E. A.; Kindrachuk, D. E.; Rovis, T. Org. Lett. 2005, 7, 107.
-
(2005)
Org. Lett
, vol.7
, pp. 107
-
-
Bercot, E.A.1
Kindrachuk, D.E.2
Rovis, T.3
-
42
-
-
2442532117
-
-
Masuda, Y.; Fujita, K.; Mori, K. Biosci. Biotechnol. Biochem. 2003, 67, 1744.
-
(2003)
Biosci. Biotechnol. Biochem
, vol.67
, pp. 1744
-
-
Masuda, Y.1
Fujita, K.2
Mori, K.3
|