메뉴 건너뛰기




Volumn 19, Issue 2, 2007, Pages 183-199

Variations of the two-spiral task

Author keywords

Benchmarking; Classification; Generalisation; Neural networks; Support vector machines

Indexed keywords

BINARY CLASSIFICATION; GENERALISATION; PILOT STUDIES; RELATIVE ROTATION; SMALL VARIATIONS; VISUAL APPEALS;

EID: 34250196183     PISSN: 09540091     EISSN: 13600494     Source Type: Journal    
DOI: 10.1080/09540090701398017     Document Type: Article
Times cited : (21)

References (122)
  • 1
    • 85152577740 scopus 로고
    • Generalizing from case studies: A case study
    • D. Sleeman and P. Edwards, Eds, Morgan Kaufmann, San Mateo, CA, USA
    • D.W. Aha, Generalizing from case studies: A case study, in Proceedings of the Ninth International Conference on Machine Learning, D. Sleeman and P. Edwards, Eds, Morgan Kaufmann, San Mateo, CA, USA, 1992, pp. 1-10.
    • (1992) Proceedings of the Ninth International Conference on Machine Learning , pp. 1-10
    • Aha, D.W.1
  • 2
    • 0033240928 scopus 로고    scopus 로고
    • Injecting knowledge into the solution of the two-spiral problem
    • J.R. Alvarez-Sanchez, Injecting knowledge into the solution of the two-spiral problem, Neural Comput. and Appli. 8, 265-272, 1999.
    • (1999) Neural Comput. and Appli , vol.8 , pp. 265-272
    • Alvarez-Sanchez, J.R.1
  • 5
    • 84951865382 scopus 로고    scopus 로고
    • KMOD-A new support vector machine kernel with moderate decreasing for pattern recognition. Application to digit image recognition
    • IEEE Computer Society, Los Alamitos, CA, USA
    • N.E. Ayat, M. Cheriet, L. Remaki and C.Y. Suen, KMOD-A new support vector machine kernel with moderate decreasing for pattern recognition. Application to digit image recognition, in Sixth International Conference on Document Analysis and Recognition (ICDAR'01). IEEE Computer Society, Los Alamitos, CA, USA, 2001, pp. 1215-1219.
    • (2001) Sixth International Conference on Document Analysis and Recognition (ICDAR'01) , pp. 1215-1219
    • Ayat, N.E.1    Cheriet, M.2    Remaki, L.3    Suen, C.Y.4
  • 6
    • 0036565279 scopus 로고    scopus 로고
    • Constructive feedforward ART clustering networks - part II
    • A. Baraldi and E. Alpaydin, Constructive feedforward ART clustering networks - part II. IEEE Trans. Syst. Man Cybern. B, 13, 662-677, 2002.
    • (2002) IEEE Trans. Syst. Man Cybern. B , vol.13 , pp. 662-677
    • Baraldi, A.1    Alpaydin, E.2
  • 7
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks. The size of the weights is more important than the size of the network
    • march
    • P.L. Bartlett, The sample complexity of pattern classification with neural networks. The size of the weights is more important than the size of the network, IEEE Trans. Inf. Theory 44, 525-535, march 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , pp. 525-535
    • Bartlett, P.L.1
  • 8
    • 0000389960 scopus 로고
    • Constructing hidden units using examples and queries
    • P. Lippmann, J.E. Moody and S. Touretzky, Eds
    • E.B. Baum and K.J. Lang, Constructing hidden units using examples and queries, in Advances in Neural Information Processing Systems (NIPS), P. Lippmann, J.E. Moody and S. Touretzky, Eds, Vol. 3, 1991, pp. 904-910.
    • (1991) Advances in Neural Information Processing Systems (NIPS) , vol.3 , pp. 904-910
    • Baum, E.B.1    Lang, K.J.2
  • 11
    • 84875574763 scopus 로고    scopus 로고
    • A.P. Bradley and B.C. Lovell, Inductive learning using multiscale classification, in A.C. Tsoi and T. Downs, Eds. The University of Queensland, Brisbane, Australia, Proceedings of the Fifth Australian Conference on Neural Networks, ACNN'94. 1994, pp. 133-136.
    • A.P. Bradley and B.C. Lovell, Inductive learning using multiscale classification, in A.C. Tsoi and T. Downs, Eds. The University of Queensland, Brisbane, Australia, Proceedings of the Fifth Australian Conference on Neural Networks, ACNN'94. 1994, pp. 133-136.
  • 12
    • 34250171440 scopus 로고    scopus 로고
    • Pattern formation, neural
    • M.A. Arbib, Ed, 2nd edn, Cambridge, MA,US A: The MIT Press
    • P.C. Bressloff and J.D. Cowan, Pattern formation, neural, in M.A. Arbib, (Ed), The Handbook of Brain Theory and Neural Networks (2nd edn), Cambridge, MA,US A: The MIT Press, 2003 pp. 859-863.
    • (2003) The Handbook of Brain Theory and Neural Networks , pp. 859-863
    • Bressloff, P.C.1    Cowan, J.D.2
  • 14
    • 0001311791 scopus 로고
    • Dynamic cell structure learns perfectly topology preserving map
    • J. Bruske and G. Sommer, Dynamic cell structure learns perfectly topology preserving map, Neural Comput. 7, 845-865, 1995.
    • (1995) Neural Comput , vol.7 , pp. 845-865
    • Bruske, J.1    Sommer, G.2
  • 15
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
    • September
    • G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds and D.B. Rosen, Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. Neural Net. 3, 698-713, September 1992.
    • (1992) IEEE Trans. Neural Net , vol.3 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.H.4    Rosen, D.B.5
  • 16
    • 0029406205 scopus 로고
    • A fuzzy ARTMAP nonparametric probability estimator for non-stationary pattern recognition problems
    • November
    • G.A. Carpenter, S. Grossberg and J.H. Reynolds, A fuzzy ARTMAP nonparametric probability estimator for non-stationary pattern recognition problems, IEEE Trans. Neural Netw, 6, 1330-1336, November 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , pp. 1330-1336
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.H.3
  • 17
  • 18
    • 0034187390 scopus 로고    scopus 로고
    • SEPARATE: A machine learning method based on semi-global partitions
    • May
    • J.L. Castro, M. Delgado and C.J. Mantas, SEPARATE: a machine learning method based on semi-global partitions, IEEE Trans. Neural Netw., 11, 710-720, May 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , pp. 710-720
    • Castro, J.L.1    Delgado, M.2    Mantas, C.J.3
  • 19
    • 0031639823 scopus 로고    scopus 로고
    • N. Chaiyaratana and A.M.S.Zalzala, Evolving hybrid RBF-MLP networks using combined genetic/unsupervised/supervised learning, in UKACC International Conference on Control '98, 1-4 September 1998, University of Wales, Swansea, UK, IEE Conference Publications No. 455. Institution of Electrical Engineers, London, UK, 1998, pp. 330-335.
    • N. Chaiyaratana and A.M.S.Zalzala, Evolving hybrid RBF-MLP networks using combined genetic/unsupervised/supervised learning, in UKACC International Conference on Control '98, 1-4 September 1998, University of Wales, Swansea, UK, IEE Conference Publications No. 455. Institution of Electrical Engineers, London, UK, 1998, pp. 330-335.
  • 20
    • 0034482649 scopus 로고    scopus 로고
    • Fuzzy perceptron neural networks for classifiers with numerical data and linguistic rules as inputs
    • December
    • J. L. Chen and J. Y. Chang, Fuzzy perceptron neural networks for classifiers with numerical data and linguistic rules as inputs, IEEE Trans. Fuzzy Syst., 8, 730-745, December 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , pp. 730-745
    • Chen, J.L.1    Chang, J.Y.2
  • 21
    • 0035441288 scopus 로고    scopus 로고
    • Perceiving geometric patterns: From spirals to inside-outside relations
    • September
    • K. Chen and D. Wang, Perceiving geometric patterns: From spirals to inside-outside relations, IEEE Trans. Neural Netw., 12, 1084-1102, September 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , pp. 1084-1102
    • Chen, K.1    Wang, D.2
  • 22
    • 0031194887 scopus 로고    scopus 로고
    • A self-generating modular neural network architecture for supervised learning
    • K. Chen, L. Yang, Y. Xiang and H. Chi. A self-generating modular neural network architecture for supervised learning. Neurocomputing, 16, 33-48, 1997.
    • (1997) Neurocomputing , vol.16 , pp. 33-48
    • Chen, K.1    Yang, L.2    Xiang, Y.3    Chi, H.4
  • 23
    • 84875556175 scopus 로고    scopus 로고
    • G. Cheng, T. Liu, J. Han and Z. Wang, A. Towards growing self-organizing neural networks with fixed dimensionality. Trans. Eng. Comp. Technol., 15, 268-272, October 2006.
    • G. Cheng, T. Liu, J. Han and Z. Wang, A. Towards growing self-organizing neural networks with fixed dimensionality. Trans. Eng. Comp. Technol., 15, 268-272, October 2006.
  • 24
    • 84875569328 scopus 로고    scopus 로고
    • G. Cheng, Z. Song, J. Yang and R. Gao, B. On growing self-organizing neural networks without fixed dimensionality, in International Conference on Computational Intelligence for Modelling, Control and Automation, 2006 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. (CIMCA-IAWTIC'06), IEEE Comp. Soc., November 2006, pp. 164-168.
    • G. Cheng, Z. Song, J. Yang and R. Gao, B. On growing self-organizing neural networks without fixed dimensionality, in International Conference on Computational Intelligence for Modelling, Control and Automation, 2006 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. (CIMCA-IAWTIC'06), IEEE Comp. Soc., November 2006, pp. 164-168.
  • 25
    • 84875560588 scopus 로고    scopus 로고
    • G. Cheng and A. Zell, Externally growing cell structures for pattern classification, in Proceedings of the Second ICSC Symposium on Neural Computation - NC'2000, H. Bothe and R. Rojas, Eds, ICSC Academic Press, Canada/Switzerland, 2000, pp. 233-239.
    • G. Cheng and A. Zell, Externally growing cell structures for pattern classification, in Proceedings of the Second ICSC Symposium on Neural Computation - NC'2000, H. Bothe and R. Rojas, Eds, ICSC Academic Press, Canada/Switzerland, 2000, pp. 233-239.
  • 26
    • 0028740629 scopus 로고
    • A divide-and-conquer methodology for modular neural network design
    • IEEE World Congress on Computational Intelligence
    • C.-C. Chiang and H.-C. Fu, 1994. A divide-and-conquer methodology for modular neural network design, in IEEE International Conference on Neural Networks 1994 (ICNN'94). IEEE World Congress on Computational Intelligence, Vol. 1, 1994. pp. 119-124.
    • (1994) IEEE International Conference on Neural Networks 1994 (ICNN'94) , vol.1 , pp. 119-124
    • Chiang, C.-C.1    Fu, H.-C.2
  • 27
    • 1542333735 scopus 로고    scopus 로고
    • Support vector learning mechanism for fuzzy rule-based modeling: A new approach
    • February
    • J.-H. Chiang and P.-Y. Hao, Support vector learning mechanism for fuzzy rule-based modeling: A new approach, IEEE Trans. Fuzzy Syst. 12, 1-12, February 2004.
    • (2004) IEEE Trans. Fuzzy Syst , vol.12 , pp. 1-12
    • Chiang, J.-H.1    Hao, P.-Y.2
  • 28
    • 0007180782 scopus 로고
    • Solving the two-spiral problem through input data encoding
    • H. Chua, J. Jia, L. Chen and Y. Gong, Solving the two-spiral problem through input data encoding. Electroni. Lett., 31, 813-814, 1995.
    • (1995) Electroni. Lett , vol.31 , pp. 813-814
    • Chua, H.1    Jia, J.2    Chen, L.3    Gong, Y.4
  • 30
    • 0036670151 scopus 로고    scopus 로고
    • Hybrid feedforward neural networks for solving classification problems
    • I.B. Ciocoiu, Hybrid feedforward neural networks for solving classification problems, Neural Process, Lett., 16, 81-91, 2002a.
    • (2002) Neural Process, Lett , vol.16 , pp. 81-91
    • Ciocoiu, I.B.1
  • 31
    • 0036826111 scopus 로고    scopus 로고
    • RBF networks training using a dual extended Kalman filter
    • I.B. Ciocoiu, RBF networks training using a dual extended Kalman filter, Neurocomputing, 48, 609-622, 2002b.
    • (2002) Neurocomputing , vol.48 , pp. 609-622
    • Ciocoiu, I.B.1
  • 34
    • 0027242809 scopus 로고
    • Initializing backpropagation networks with prototypes
    • T. Denoeux and R. Lengelle, Initializing backpropagation networks with prototypes, Neural Netw., 6, 351-363, 1993.
    • (1993) Neural Netw , vol.6 , pp. 351-363
    • Denoeux, T.1    Lengelle, R.2
  • 35
    • 84944313345 scopus 로고    scopus 로고
    • B. Dolin, M.G. Arenas, J.J. Merelo, Opposites attract: Complementary phenotype selection for crossover in genetic programming, in J.-J.M. Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernélndez-Villacanas and H.-P. Schwefel, Eds., Parallel problem solving from nature - PPSN VII, in 7th International Conference, Granada, Spain, 7-11, September, 2002. Proceedings. 2439 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, pp. 142-152.
    • B. Dolin, M.G. Arenas, J.J. Merelo, Opposites attract: Complementary phenotype selection for crossover in genetic programming, in J.-J.M. Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernélndez-Villacanas and H.-P. Schwefel, Eds., Parallel problem solving from nature - PPSN VII, in 7th International Conference, Granada, Spain, 7-11, September, 2002. Proceedings. Vol. 2439 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, pp. 142-152.
  • 36
    • 33846293569 scopus 로고    scopus 로고
    • Rectified nearest feature line segment for pattern classification
    • H. Du and Y.Q. Chen, 2007. Rectified nearest feature line segment for pattern classification, Pattern Recognit. 40, 1486-1497.
    • (2007) Pattern Recognit , vol.40 , pp. 1486-1497
    • Du, H.1    Chen, Y.Q.2
  • 37
    • 0003578240 scopus 로고    scopus 로고
    • An empirical study of learning speed in back-propagation networks
    • CMU-CS-88-162, Carnegie Mellon University, Pittsburgh PA
    • S.E. Fahlman, An empirical study of learning speed in back-propagation networks. Computer Science Department Technical Report CMU-CS-88-162, Carnegie Mellon University, Pittsburgh PA, 1998a.
    • (1998) Computer Science Department Technical Report
    • Fahlman, S.E.1
  • 38
    • 0003000735 scopus 로고    scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • D.S. Touretzky, G.E. Hinton and T.J. Sejnowski, Eds, Morgan Kaufmann Publishers, Inc. San Mateo, CA: pp
    • S.E. Fahlman, Faster-learning variations on back-propagation: an empirical study, in Proceedings 1988 Connectionist Models Summer School, D.S. Touretzky, G.E. Hinton and T.J. Sejnowski, Eds, Morgan Kaufmann Publishers, Inc. San Mateo, CA: pp. 38-51. 1998b.
    • (1998) Proceedings 1988 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 40
    • 0003420910 scopus 로고
    • The cascade-correlation learning architecture
    • Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, August
    • S.E. Fahlman and C. Lebiere, The cascade-correlation learning architecture. Technical Report CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, August 1991.
    • (1991)
    • Fahlman, S.E.1    Lebiere, C.2
  • 41
    • 0028195681 scopus 로고
    • Structural adpation of parsimonious higher-order neural classifiers
    • G. Fahner and R. Eckmiller, Structural adpation of parsimonious higher-order neural classifiers. Neural Netw., 7, 279-289, 1994.
    • (1994) Neural Netw , vol.7 , pp. 279-289
    • Fahner, G.1    Eckmiller, R.2
  • 42
    • 0033895304 scopus 로고    scopus 로고
    • Applying SP-MLP to complex classifcation problems
    • W. Fan and L. Zhang, Applying SP-MLP to complex classifcation problems. Pattern Recognit. Lett., 21, 9-19, 2000.
    • (2000) Pattern Recognit. Lett , vol.21 , pp. 9-19
    • Fan, W.1    Zhang, L.2
  • 43
    • 0028748949 scopus 로고
    • Growing cell structures a self-organizing network for unsupervised and supervised learning
    • B. Fritzke, Growing cell structures a self-organizing network for unsupervised and supervised learning, Neural Netw, 7, 1441-1460, 1994.
    • (1994) Neural Netw , vol.7 , pp. 1441-1460
    • Fritzke, B.1
  • 44
    • 0035272716 scopus 로고    scopus 로고
    • Divide-and-conquer learning and modular perceptron networks
    • March
    • H.-C. Fu, Y.-P. Lee, C.-C. Chiang and H.-T. Pao, Divide-and-conquer learning and modular perceptron networks, IEEE Trans. Neural Netw., 12, 250-263, March 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , pp. 250-263
    • Fu, H.-C.1    Lee, Y.-P.2    Chiang, C.-C.3    Pao, H.-T.4
  • 45
    • 0036584582 scopus 로고    scopus 로고
    • Optimization of the kernel functions in a probabilistic neural network analyzing the local pattern distribution
    • I. Galleske and J. Castellanos, Optimization of the kernel functions in a probabilistic neural network analyzing the local pattern distribution, Neural Compu., 14, 1183-1194, 2002.
    • (2002) Neural Compu , vol.14 , pp. 1183-1194
    • Galleske, I.1    Castellanos, J.2
  • 46
    • 34250206864 scopus 로고
    • A network of localized linear discriminants
    • J.E. Moody, S.J. Hanson and R. Lippmann, Eds, Morgan Kaufmann, pp
    • M.S. Glassman, A network of localized linear discriminants, in Advances in Neural Information Processing Systems (NIPS) J.E. Moody, S.J. Hanson and R. Lippmann, Eds, Vol. 4 Morgan Kaufmann, pp. 1102-1109, 1992.
    • (1992) Advances in Neural Information Processing Systems (NIPS) , vol.4 , pp. 1102-1109
    • Glassman, M.S.1
  • 47
    • 0026392742 scopus 로고
    • A neural network architecture for figure-ground separation of connected scenic figures
    • S. Grossberg and L. Wyse, A neural network architecture for figure-ground separation of connected scenic figures, Neural Netw., 4, 723-742, 1991.
    • (1991) Neural Netw , vol.4 , pp. 723-742
    • Grossberg, S.1    Wyse, L.2
  • 50
    • 33747618287 scopus 로고
    • Sequential learning of casasent network classifiers: Constructing piecewise spherical decision boundaries
    • M. Marinaro and P.G. Morasso, Eds, Springer-Verlag, Heidelberg
    • M.J.J. Holt, Sequential learning of casasent network classifiers: constructing piecewise spherical decision boundaries, in Proceedings of the International Conference of Artificial Neural Networks (ICANN'94), Sorrent M. Marinaro and P.G. Morasso, Eds, Springer-Verlag, Heidelberg, 1994a, pp. 1412-1415.
    • (1994) Proceedings of the International Conference of Artificial Neural Networks (ICANN'94), Sorrent , pp. 1412-1415
    • Holt, M.J.J.1
  • 51
    • 34250170030 scopus 로고
    • A weight learning strategy for sequential construction of casasent network classifiers
    • M. Marinaro and P.G. Morasso, Eds, Springer-Verlag, Heidelberg
    • M.J.J. Holt, A weight learning strategy for sequential construction of casasent network classifiers, in Proceedings of the International Conference of Artificial Neural Networks (ICANN'94), Sorrent. M. Marinaro and P.G. Morasso, Eds, Springer-Verlag, Heidelberg, 1994b, pp. 1416-1419.
    • (1994) Proceedings of the International Conference of Artificial Neural Networks (ICANN'94), Sorrent , pp. 1416-1419
    • Holt, M.J.J.1
  • 52
    • 0016311396 scopus 로고
    • Proposals for the study of anomalous perceptual schemata
    • I. Howard, Proposals for the study of anomalous perceptual schemata. Perception. 3, 497-513, 1974.
    • (1974) Perception , vol.3 , pp. 497-513
    • Howard, I.1
  • 53
    • 10444248803 scopus 로고    scopus 로고
    • Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms
    • March
    • D.-S. Huang and W.-B. Zhao, Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms, Appl. Math. Comput., 162, 461-473, March 2005.
    • (2005) Appl. Math. Comput , vol.162 , pp. 461-473
    • Huang, D.-S.1    Zhao, W.-B.2
  • 54
    • 0030108039 scopus 로고    scopus 로고
    • The cascade-correlation learning: A projection pursuit learning perspective
    • March
    • J.-N. Hwang, S.-S. You, S.-R. Lay and I.-C. Jou, The cascade-correlation learning: a projection pursuit learning perspective, IEEE Trans. Neural Netw., 7, 278-289, March 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , pp. 278-289
    • Hwang, J.-N.1    You, S.-S.2    Lay, S.-R.3    Jou, I.-C.4
  • 57
    • 0032830354 scopus 로고    scopus 로고
    • Accelerating neural network training using weight extrapolations
    • S.V. Kamarthi and S. Pittner, Accelerating neural network training using weight extrapolations, Neural Netw., 12, 1285-1299, 1999.
    • (1999) Neural Netw , vol.12 , pp. 1285-1299
    • Kamarthi, S.V.1    Pittner, S.2
  • 58
    • 0031233488 scopus 로고    scopus 로고
    • Kernel orthonormalization in radial basis function neural networks
    • September
    • W. Kaminski and P. S trumillo, Kernel orthonormalization in radial basis function neural networks, IEEE Trans. Neural Netw., 8, 1177-1183, September 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , pp. 1177-1183
    • Kaminski, W.1    trumillo, P.S.2
  • 59
    • 0030167936 scopus 로고    scopus 로고
    • Hybrid learning schemes for fast training of feed-forward neural networks
    • N.B. Karayiannis, Hybrid learning schemes for fast training of feed-forward neural networks, Math. Comp. Simul., 41, 13-28, 1996.
    • (1996) Math. Comp. Simul , vol.41 , pp. 13-28
    • Karayiannis, N.B.1
  • 60
    • 0442312145 scopus 로고    scopus 로고
    • Binary partitioning, perceptual grouping, and restoration with semidefinite programming
    • November
    • J. Keuchel, C. Schnörr, C. Schellewald and D. Cremers, Binary partitioning, perceptual grouping, and restoration with semidefinite programming. IEEE Trans. Pattern Analy. Mach. Intelli., 25, 1364-1379, November 2003.
    • (2003) IEEE Trans. Pattern Analy. Mach. Intelli , vol.25 , pp. 1364-1379
    • Keuchel, J.1    Schnörr, C.2    Schellewald, C.3    Cremers, D.4
  • 62
    • 0031588791 scopus 로고    scopus 로고
    • Initializing of an RBF network by a genetic algorithm
    • L.I. Kuncheva, Initializing of an RBF network by a genetic algorithm, Neurocomputing, 14, 273-288, 1997.
    • (1997) Neurocomputing , vol.14 , pp. 273-288
    • Kuncheva, L.I.1
  • 63
    • 0036825537 scopus 로고    scopus 로고
    • Evaluation of constructive neural networks with cascaded architectures
    • October
    • J.J.T. Lahnajärvi, M.I. Lehtokangas and J.P.P. Saarinen, Evaluation of constructive neural networks with cascaded architectures, Neurocomputing, 48, 573-607, October 2002.
    • (2002) Neurocomputing , vol.48 , pp. 573-607
    • Lahnajärvi, J.J.T.1    Lehtokangas, M.I.2    Saarinen, J.P.P.3
  • 64
    • 84875567387 scopus 로고    scopus 로고
    • K.J. Lang and M.J. Witbrock, Learning to tell two spirals apart, in Proceedings 1988 Connectionist Models Summer School, Morgan Kaufmann, Los Altos, CA: D. Touretzky, G. Hinton and T. Sejnowski, Eds, 1988, pp. 52-59.
    • K.J. Lang and M.J. Witbrock, Learning to tell two spirals apart, in Proceedings 1988 Connectionist Models Summer School, Morgan Kaufmann, Los Altos, CA: D. Touretzky, G. Hinton and T. Sejnowski, Eds, 1988, pp. 52-59.
  • 67
    • 0342656186 scopus 로고    scopus 로고
    • Determining the number of centroids for CMLP network
    • M. Lehtokangas, Determining the number of centroids for CMLP network, Neural Netw., 13, 525-531, 2000.
    • (2000) Neural Netw , vol.13 , pp. 525-531
    • Lehtokangas, M.1
  • 68
    • 0032047950 scopus 로고    scopus 로고
    • Centroid based multilayer perceptron networks
    • April
    • M. Lehtokangas and J. Saarinen, Centroid based multilayer perceptron networks, Neural Process. Lett. 7, 101-106, April 1998a.
    • (1998) Neural Process. Lett , vol.7 , pp. 101-106
    • Lehtokangas, M.1    Saarinen, J.2
  • 69
    • 0032585006 scopus 로고    scopus 로고
    • Weight initialization with reference patterns
    • August
    • M. Lehtokangas and J. Saarinen, Weight initialization with reference patterns, Neurocomputing, 20, 265-278, August 1998b.
    • (1998) Neurocomputing , vol.20 , pp. 265-278
    • Lehtokangas, M.1    Saarinen, J.2
  • 71
    • 0032594843 scopus 로고    scopus 로고
    • Task decomposition and module combination based on class relations: A modular neural network for pattern classification
    • September
    • B.-L. Lu and M. Ito, Task decomposition and module combination based on class relations: A modular neural network for pattern classification, IEEE Trans. Neural Netw., 10, 1244-1256, September 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , pp. 1244-1256
    • Lu, B.-L.1    Ito, M.2
  • 72
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • W.S. McCulloch and W. Pitts, A logical calculus of ideas immanent in nervous activity, Bull. Math. Biophys., 5, 115-133, 1943.
    • (1943) Bull. Math. Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 75
    • 0036085539 scopus 로고    scopus 로고
    • MLP's hidden node saturations and insensitivity to initial weights in two classification benchmark problems: Parity and two-spirals
    • IEEE Press
    • E. Mizutani and S.E. Dreyfus, MLP's hidden node saturations and insensitivity to initial weights in two classification benchmark problems: parity and two-spirals, in Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN '02), Vol. 3, IEEE Press, 2002, pp. 2831-2836.
    • (2002) Proceedings of the 2002 International Joint Conference on Neural Networks (IJCNN '02) , vol.3 , pp. 2831-2836
    • Mizutani, E.1    Dreyfus, S.E.2
  • 76
    • 0030477946 scopus 로고    scopus 로고
    • Fast second order learning algorithm for feedforward multilayer neural networks and its applications
    • S. Osowski, P. Bojarczak and M. Stodolski, Fast second order learning algorithm for feedforward multilayer neural networks and its applications, Neural Netw., 9, 1583-1596, 1996.
    • (1996) Neural Netw , vol.9 , pp. 1583-1596
    • Osowski, S.1    Bojarczak, P.2    Stodolski, M.3
  • 77
    • 0036858392 scopus 로고    scopus 로고
    • Fully automatic clustering system
    • November
    • G. Patanè and M. Russo, Fully automatic clustering system, IEEE Trans. Neural Netw., 13, 1285-1298, November 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , pp. 1285-1298
    • Patanè, G.1    Russo, M.2
  • 78
    • 84875557477 scopus 로고    scopus 로고
    • K. Pelckmans, J.A.K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B. De Moor and J. Vandewalle, LS-SVM lab: a Matlab/C toolbox for least squares support vector machines. Internal Report 02-44, ESAT-SISTA, K.U. Leuven, Belgium, Leuven, Belgium, 2002.
    • K. Pelckmans, J.A.K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B. De Moor and J. Vandewalle, LS-SVM lab: a Matlab/C toolbox for least squares support vector machines. Internal Report 02-44, ESAT-SISTA, K.U. Leuven, Belgium, Leuven, Belgium, 2002.
  • 79
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: An architecture for evolving coadapted subcomponents
    • M.A. Potter and K.A. De Jong, Cooperative coevolution: an architecture for evolving coadapted subcomponents, Evol. Comp., 8, 1-29, 2000.
    • (2000) Evol. Comp , vol.8 , pp. 1-29
    • Potter, M.A.1    De Jong, K.A.2
  • 80
    • 0004114283 scopus 로고
    • PROBEN 1 - a set of benchmarks and benchmarking rules for neural network training algorithms
    • Technical report 21, Universität Karlsruhe; Institut für Programmstrukturen und Datenorganisation, Germany
    • L. Prechelt, 1994. PROBEN 1 - a set of benchmarks and benchmarking rules for neural network training algorithms. Technical report 21, Universität Karlsruhe; Institut für Programmstrukturen und Datenorganisation, Germany.
    • (1994)
    • Prechelt, L.1
  • 82
    • 33750583002 scopus 로고    scopus 로고
    • On data based learning using support vector clustering
    • L. Wang, J.C. Rajapakse, K. Fukushima, S.-Y. Lee and X. Yao, Eds
    • B. Ribeiro, On data based learning using support vector clustering, in Proceedings of the 9th International Conference on Neural Information Processing (ICONIP '02), L. Wang, J.C. Rajapakse, K. Fukushima, S.-Y. Lee and X. Yao, Eds, Vol. 5, 2002, pp. 2516-2521.
    • (2002) Proceedings of the 9th International Conference on Neural Information Processing (ICONIP '02) , vol.5 , pp. 2516-2521
    • Ribeiro, B.1
  • 83
    • 0030817465 scopus 로고    scopus 로고
    • Circular backpropagation networks for classification
    • January
    • S. Ridella, S. Rovetta and R. Zunino, Circular backpropagation networks for classification. IEEE Trans. Neural Netw., 8, 84-97, January 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , pp. 84-97
    • Ridella, S.1    Rovetta, S.2    Zunino, R.3
  • 84
    • 0032785933 scopus 로고    scopus 로고
    • Representation and generalization properties of class-entropy networks
    • January
    • S. Ridella, S. Rovetta and R. Zunino, Representation and generalization properties of class-entropy networks. IEEE Trans. Neural Netw., 10, 31-47, January 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , pp. 31-47
    • Ridella, S.1    Rovetta, S.2    Zunino, R.3
  • 85
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. 65, 386-408, 1958.
    • (1958) Psychol. Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 86
    • 21844514693 scopus 로고
    • A neural network construction algorithm which maximizes the likelihood function
    • R. Setiono, A neural network construction algorithm which maximizes the likelihood function, Connection Sci., 7, 147-166, 1995.
    • (1995) Connection Sci , vol.7 , pp. 147-166
    • Setiono, R.1
  • 87
    • 0030104504 scopus 로고    scopus 로고
    • Global optimization for neural network training
    • Y. Shang and B.W. Wah, Global optimization for neural network training. IEEE Comp., 29, 45-54, 1996.
    • (1996) IEEE Comp , vol.29 , pp. 45-54
    • Shang, Y.1    Wah, B.W.2
  • 90
    • 0031994918 scopus 로고    scopus 로고
    • 2D spiral pattern recognition with probabilistic measures
    • S. Singh, 2D spiral pattern recognition with probabilistic measures, Patt. Recog. Lett., 19, 141-147, 1998.
    • (1998) Patt. Recog. Lett , vol.19 , pp. 141-147
    • Singh, S.1
  • 92
    • 0035533494 scopus 로고    scopus 로고
    • Quantifying structural time varying changes in helical data
    • S. Singh, Quantifying structural time varying changes in helical data, Neural Comp. Appli., 10, 148-154, 2001.
    • (2001) Neural Comp. Appli , vol.10 , pp. 148-154
    • Singh, S.1
  • 93
    • 0029769829 scopus 로고    scopus 로고
    • The pandemonium systems of reflective agents
    • January
    • F. Smieja, The pandemonium systems of reflective agents, IEEE Trans. Neural Netw., 7, 97-106, January 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , pp. 97-106
    • Smieja, F.1
  • 94
    • 0033699302 scopus 로고    scopus 로고
    • Artificial neural networks with adaptive multidimensional spline activation functions
    • S.-I. Amari, C.L. Giles, M. Gori and V. Piuri, Eds, Como, Italy, 24-27 July, IEEE Computer Society, pp
    • M. Solazzi and A. Uncini, Artificial neural networks with adaptive multidimensional spline activation functions, in IJCNN-2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, S.-I. Amari, C.L. Giles, M. Gori and V. Piuri, Eds, Como, Italy, 24-27 July, 2000, Vol. 3, IEEE Computer Society, pp. 471-476.
    • (2000) IJCNN-2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks , vol.3 , pp. 471-476
    • Solazzi, M.1    Uncini, A.2
  • 95
    • 0033353812 scopus 로고    scopus 로고
    • Neural networks with periodic and monotonic activation functions: A comparative study in classification problems
    • D. Willshaw and A. Murray, Eds, University of Edinburgh. IEE Conference Publication No. 470
    • J.M. Sopena, E. Romero and R. Alquzar, Neural networks with periodic and monotonic activation functions: a comparative study in classification problems, in Proceedings of the 9th International Conference on Artificial Neural Networks (ICANN'99), D. Willshaw and A. Murray, Eds, University of Edinburgh. IEE Conference Publication No. 470, 1999, pp. 323-328.
    • (1999) Proceedings of the 9th International Conference on Artificial Neural Networks (ICANN'99) , pp. 323-328
    • Sopena, J.M.1    Romero, E.2    Alquzar, R.3
  • 98
    • 84875575669 scopus 로고    scopus 로고
    • J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle, Least Squares Support Vector Machines, Singapore: World Scientific Pub. Co., and 2002.
    • J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle, Least Squares Support Vector Machines, Singapore: World Scientific Pub. Co., and 2002.
  • 99
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural Process. Lett., 9, 293-300, 1999a.
    • (1999) Neural Process. Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 100
    • 0032634974 scopus 로고    scopus 로고
    • Training multilayer perceptron classifiers based on a modified support vector method
    • July
    • J.A.K. Suykens and J. Vandewalle, Training multilayer perceptron classifiers based on a modified support vector method. IEEE Trans. Neural Netw., 10, 907-911, July 1999b.
    • (1999) IEEE Trans. Neural Netw , vol.10 , pp. 907-911
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 101
    • 0030243161 scopus 로고    scopus 로고
    • Automated learning for reducing the configuration of a feed-forward neural network
    • September
    • C.-C. Teng and B.W. Wan, Automated learning for reducing the configuration of a feed-forward neural network, IEEE Trans. Neural Netw., 1, 1072-1085, September 1996.
    • (1996) IEEE Trans. Neural Netw , vol.1 , pp. 1072-1085
    • Teng, C.-C.1    Wan, B.W.2
  • 102
    • 0037239468 scopus 로고    scopus 로고
    • Simultaneous perturbation for single hidden layer networks-cascade learning
    • January
    • P. Thangavel and T. Kathirvalavakumar, Simultaneous perturbation for single hidden layer networks-cascade learning, Neurocomp., 50, 193-209, January 2003.
    • (2003) Neurocomp , vol.50 , pp. 193-209
    • Thangavel, P.1    Kathirvalavakumar, T.2
  • 104
    • 0034855365 scopus 로고    scopus 로고
    • A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust 'black box'-tool for data analysis
    • D. Tomandl and A. Schober, A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust 'black box'-tool for data analysis, Neural Netw., 14, 1023-1034, 2001.
    • (2001) Neural Netw , vol.14 , pp. 1023-1034
    • Tomandl, D.1    Schober, A.2
  • 105
    • 1242296759 scopus 로고    scopus 로고
    • A cascade network algorithm employing progressive RPROP. in Biological and Artificial Computation: From Neuroscience to Technology, International Work-Conference on Artificial and Natural Neural Networks, IWANN '97, Lanzarote, Canary Islands, Spain, 4-6, June, J. Mira
    • R. Moreno-Díaz and J. Cabestany, Eds, 1997, Proceedings, of, Springer-Verlag, pp
    • N.K. Treadgold and T.D. Gedeon, A cascade network algorithm employing progressive RPROP. in Biological and Artificial Computation: from Neuroscience to Technology, International Work-Conference on Artificial and Natural Neural Networks, IWANN '97, Lanzarote, Canary Islands, Spain, 4-6, June, J. Mira, R. Moreno-Díaz and J. Cabestany, Eds, 1997, Proceedings, Vol. 1240 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, pp. 733-742.
    • Lecture Notes in Computer Science , vol.1240 , pp. 733-742
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 106
    • 84961341495 scopus 로고    scopus 로고
    • Extending and benchmarking the CasPer algorithm
    • Advanced Topics in Artificial Intelligence, 10th Australian Joint Conference on Artificial Intelligence, AI'97, Perth, Australia, A. Satter, Ed, of, Springer-Verlag
    • N.K. Treadgold and T.D. Gedeon, Extending and benchmarking the CasPer algorithm, in Advanced Topics in Artificial Intelligence, 10th Australian Joint Conference on Artificial Intelligence, AI'97, Perth, Australia, A. Satter, (Ed.), Vol. 1342 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, 1997b, pp. 398-406.
    • (1997) Lecture Notes in Computer Science , vol.1342 , pp. 398-406
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 107
    • 0033332525 scopus 로고    scopus 로고
    • Exploring constructive cascade networks
    • November
    • N.K. Treadgold and T.D. Gedeon, Exploring constructive cascade networks, IEEE Trans. Neural Netw., 10, 1335-1350, November 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , pp. 1335-1350
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 108
    • 0021518106 scopus 로고
    • A theory of the learnable
    • November
    • L.G. Valiant, A theory of the learnable. Comm. ACM, 27, 1134-1142, November 1994.
    • (1994) Comm. ACM , vol.27 , pp. 1134-1142
    • Valiant, L.G.1
  • 109
    • 0003969585 scopus 로고
    • Estimation of Dependences Based on Empirical Data [in Russian]
    • New York: Springer-Verlag
    • V.N. Vapnik, Estimation of Dependences Based on Empirical Data [in Russian]. Nauka, Moscow, English translation: New York: Springer-Verlag, 1979.
    • (1979) Nauka, Moscow, English translation
    • Vapnik, V.N.1
  • 112
    • 0026268012 scopus 로고
    • Neural training and generalisation of sequences using continuous temporal structure
    • IEEE
    • M.K. Weir and L.H. Chen, Neural training and generalisation of sequences using continuous temporal structure, in 1991 IEEE International Joint Conference on Neural Networks, Vol. 3. IEEE, 1991 pp. 2027-2032.
    • (1991) 1991 IEEE International Joint Conference on Neural Networks , vol.3 , pp. 2027-2032
    • Weir, M.K.1    Chen, L.H.2
  • 116
    • 0030198885 scopus 로고    scopus 로고
    • Gaussian ARTMAP: A neural network for fast incremental learning of noisy multidimensional maps
    • J.R. Williamson, Gaussian ARTMAP: a neural network for fast incremental learning of noisy multidimensional maps. Neural Netw. 9, 881-897, 1996.
    • (1996) Neural Netw , vol.9 , pp. 881-897
    • Williamson, J.R.1
  • 118
    • 0242578092 scopus 로고    scopus 로고
    • A functions localized neural network with branch gates
    • Q. Xiong, K. Hirasawa, J. Hu and J. Murata, A functions localized neural network with branch gates, Neural Netw., 16, 1461-1481, 2003.
    • (2003) Neural Netw , vol.16 , pp. 1461-1481
    • Xiong, Q.1    Hirasawa, K.2    Hu, J.3    Murata, J.4
  • 119
    • 0035566378 scopus 로고    scopus 로고
    • A robust evolutionary algorithm for training neural networks
    • J.-M. Yang and C.-Y. Kao, A robust evolutionary algorithm for training neural networks, Neural Compt. Appli., 10, 214-230, 2001.
    • (2001) Neural Compt. Appli , vol.10 , pp. 214-230
    • Yang, J.-M.1    Kao, C.-Y.2
  • 120
    • 0032207884 scopus 로고    scopus 로고
    • CARVE-a constructive algorithm for real-valued examples
    • November
    • S. Young and T. Downs, CARVE-a constructive algorithm for real-valued examples. IEEE Trans. Neural Netw., 9, 1180-1190, November 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , pp. 1180-1190
    • Young, S.1    Downs, T.2
  • 122
    • 0032626467 scopus 로고    scopus 로고
    • A geometrical representation of McCulloch-Pitts neural model and its applications
    • July
    • L. Zhang and B. Zhang, A geometrical representation of McCulloch-Pitts neural model and its applications, IEEE Trans. Neural Netw., 10, 925-929, July 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , pp. 925-929
    • Zhang, L.1    Zhang, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.