-
1
-
-
85032752004
-
Progress in supervised neural networks: What's new since Lippmann?
-
Jan.
-
R. Hush and B. G. Home, "Progress in supervised neural networks: What's new since Lippmann?" IEEE Signal Processing Mag., vol. 10, pp. 8-39, Jan. 1993.
-
(1993)
IEEE Signal Processing Mag.
, vol.10
, pp. 8-39
-
-
Hush, R.1
Home, B.G.2
-
2
-
-
0029306750
-
Learning without local minima in radial basis function networks
-
May
-
M. Bianchini, P. Frasconi, and M. Gori, "Learning without local minima in radial basis function networks," IEEE Trans. Neural Networks, vol. 6, pp. 749-755, May 1995.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 749-755
-
-
Bianchini, M.1
Frasconi, P.2
Gori, M.3
-
3
-
-
0029341753
-
Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks
-
July
-
T. Chen and H. Chen, "Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks," IEEE Trans. Neural Networks, vol. 6, pp. 904-910, July 1995.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 904-910
-
-
Chen, T.1
Chen, H.2
-
4
-
-
0029373360
-
On the persistency of excitation in radial basis function network identification of nonlinear systems
-
Sept.
-
D. Gorinievsky, "On the persistency of excitation in radial basis function network identification of nonlinear systems," IEEE Trans. Neural Networks, vol. 6, pp. 1237-1244, Sept. 1995.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 1237-1244
-
-
Gorinievsky, D.1
-
5
-
-
0029733768
-
Gradient radial basis function networks for nonstationary nonlinear time series prediction
-
Jan.
-
E. S. Chng, S. Chen, and M. Mulgrew, "Gradient radial basis function networks for nonstationary nonlinear time series prediction," IEEE Trans. Neural Networks, vol. 7, pp. 190-194, Jan. 1996.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 190-194
-
-
Chng, E.S.1
Chen, S.2
Mulgrew, M.3
-
6
-
-
0001355838
-
Radial basis functions for multivariable interpolation: A review
-
J. C. Mason, M. G. Cox, Eds. Oxford, U.K.: Oxford Univ. Press
-
M. J. D. Powell, "Radial basis functions for multivariable interpolation: A review," in Algorithms for Approximation of Functions and Data, J. C. Mason, M. G. Cox, Eds. Oxford, U.K.: Oxford Univ. Press, 1987, pp. 143-167.
-
(1987)
Algorithms for Approximation of Functions and Data
, pp. 143-167
-
-
Powell, M.J.D.1
-
7
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Syst., vol. 2, pp. 321-355, 1988.
-
(1988)
Complex Syst.
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
8
-
-
0025490985
-
Networks for approximation and learning
-
Sept.
-
T. Poggio and F. Girosi, "Networks for approximation and learning," Proc. IEEE, vol. 78, no. 9, pp. 1481-1497, Sept. 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
10
-
-
0000672424
-
Fast learning in networks of locally-tuned processing units
-
J. E. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units," Neural Computa., vol. 1, pp. 281-294, 1989.
-
(1989)
Neural Computa.
, vol.1
, pp. 281-294
-
-
Moody, J.E.1
Darken, C.J.2
-
12
-
-
0026188672
-
Orthogonal approaches to time-series analysis and system identification
-
July
-
M. J. Korenberg, "Orthogonal approaches to time-series analysis and system identification," IEEE Signal Processing Mag., pp. 29-43, July 1991.
-
(1991)
IEEE Signal Processing Mag.
, pp. 29-43
-
-
Korenberg, M.J.1
-
13
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Mar.
-
S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Networks, vol. 2, pp. 302-309, Mar. 1991.
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
14
-
-
0029373515
-
On the application of orthogonal transformation for the design and analysis of feedforward networks
-
Sept.
-
P. P. Kanjilal and D. N. Banerjee, "On the application of orthogonal transformation for the design and analysis of feedforward networks," IEEE Trans. Neural Networks, vol. 6, pp. 1061-1070, Sept. 1995.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 1061-1070
-
-
Kanjilal, P.P.1
Banerjee, D.N.2
-
15
-
-
0001860703
-
Fast pruning using principal components
-
J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Francisco, CA: Morgan Kaufmann
-
A. Levin, T. K. Leen, and J. E. Moody, "Fast pruning using principal components," in Advances in Neural Inform. Processing Syst. 6, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. San Francisco, CA: Morgan Kaufmann, 1994.
-
(1994)
Advances in Neural Inform. Processing Syst. 6
-
-
Levin, A.1
Leen, T.K.2
Moody, J.E.3
-
17
-
-
0030197198
-
Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
-
July
-
B. A. Whitehead and T. D. Choate, "Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction," IEEE Trans. Neural Networks, vol. 7, pp. 869-880, July 1996.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 869-880
-
-
Whitehead, B.A.1
Choate, T.D.2
-
20
-
-
0025488663
-
30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
-
B. Widrow and M. A. Lehr, "30 years of adaptive neural networks: Perceptron, madaline, and backpropagation," Proc. IEEE, vol. 78, pp. 1415-1442, 1990.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1415-1442
-
-
Widrow, B.1
Lehr, M.A.2
-
21
-
-
0017185443
-
Simple mathematical models with very complicated dynamics
-
R. M. May, "Simple mathematical models with very complicated dynamics," Nature, vol. 261, pp. 459-467, 1976.
-
(1976)
Nature
, vol.261
, pp. 459-467
-
-
May, R.M.1
-
22
-
-
0003645482
-
-
Los Alamos National Laboratory, Los Alamos, NM, Res. Rep. LA-VR-87-2662
-
A. Lapedes and R. Faber, "Nonlinear signal processing using neural networks: Prediction and system modeling," Los Alamos National Laboratory, Los Alamos, NM, Res. Rep. LA-VR-87-2662, 1988.
-
(1988)
Nonlinear Signal Processing Using Neural Networks: Prediction and System Modeling
-
-
Lapedes, A.1
Faber, R.2
|