메뉴 건너뛰기




Volumn 130, Issue 2, 2002, Pages 189-205

Hierarchical neuro-fuzzy quadtree models

Author keywords

Fuzzy system models; Learning; Neuro fuzzy system; Quadtree recursive partitioning

Indexed keywords


EID: 0036721675     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0165-0114(01)00145-2     Document Type: Article
Times cited : (44)

References (29)
  • 1
    • 85120140809 scopus 로고    scopus 로고
    • B. Bouchon-Meunier, C. Marsala, Learning fuzzy decision rules, in: J.C. Bezdec, D. Dubois, H. Prade (Eds.), Fuzzy Sets in Approximate Reasoning and Information Systems, ISBN 0-7923-8584-5, 1999, pp. 279–304.
  • 2
    • 85120099921 scopus 로고    scopus 로고
    • M. Brown, K.M. Bossley, D.J. Mills, C.J. Harris, High dimensional neurofuzzy systems: overcoming the curse of dimensionality, Proceedings of the International Joint Conference on Fuzzy Systems and the 2nd International Fuzzy Engineering Symposium Yokohama, Japan, March 1995, pp. 2139–2146.
  • 3
    • 85120144343 scopus 로고    scopus 로고
    • N. Chin, S. Feiner, Near real-time shadow generation using BSP trees, Computer Graphics, SIGGRAPH ’89 Proceedings, vol. 23(3), July 1989, pp. 99–106.
  • 4
    • 85120131286 scopus 로고    scopus 로고
    • Y. Chrysanthou, M. Slater, Computing dynamic changes to BSP trees. Computer Graphics Forum, EUROGRAPHICS ’92 Proceedings, vol. 11(3), September 1992, pp. 321–332.
  • 6
    • 85120132869 scopus 로고    scopus 로고
    • S. Fahlman, C. Lebiere, The cascade-correlation learning architecture, Technical Report CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, PA, August 1991.
  • 7
    • 0016353777 scopus 로고
    • Quad trees, a data structure for retrieval on composite keys
    • R.A. Finkel J.L. Bentley Quad trees, a data structure for retrieval on composite keys Acta Inform. 4 1974 1 9
    • (1974) Acta Inform. , vol.4 , pp. 1-9
    • Finkel, R.A.1    Bentley, J.L.2
  • 8
    • 33947602485 scopus 로고
    • Neural networks in designing fuzzy systems for real world applications
    • S.K. Halgamuge M. Glesner Neural networks in designing fuzzy systems for real world applications Fuzzy Sets and Systems 65 1994 1 12
    • (1994) Fuzzy Sets and Systems , vol.65 , pp. 1-12
    • Halgamuge, S.K.1    Glesner, M.2
  • 9
    • 85120140356 scopus 로고    scopus 로고
    • S. Haykin Neural Networks—A Comprehensive Foundation 1998 Macmillan College Publishing Company, Inc New York
    • (1998)
    • Haykin, S.1
  • 10
    • 85120103087 scopus 로고    scopus 로고
    • R. Holve, Rule generation for hierarchical fuzzy systems, Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society—NAFIPS, September 1997, NY, USA, pp. 444–449.
  • 11
    • 85120121101 scopus 로고    scopus 로고
    • R. Holve, Investigation of automatic rule generation for hierarquical fuzzy systems, Proceedings of Fuzzy IEEE, 1998 IEEE World Congress On Computational Intelligence, May 4–9, Anchorage, Alaska, pp. 973–978.
  • 12
    • 85120142706 scopus 로고    scopus 로고
    • M. Iskarous, K. Kawamura, Intelligent Control Using a Neuro-Fuzzy Network, Center for Intelligent Systems, Vanderbilt University, Nashville, USA.
  • 13
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • J.S.R. Jang ANFIS: adaptive-network-based fuzzy inference system IEEE Trans. Systems Man Cybernet. 23 3 1993 665 685
    • (1993) IEEE Trans. Systems Man Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 14
    • 85120126877 scopus 로고    scopus 로고
    • J.S.R. Jang, C.T. Sun, Neuro-fuzzy modeling and control, Proceedings of the IEEE, March 1995.
  • 15
    • 85120096101 scopus 로고
    • B. Kosko Neural Networks and Fuzzy Systems 1992 Prentice-Hall, Inc Englewood Cliffs, NJ
    • (1992)
    • Kosko, B.1
  • 16
    • 85120139033 scopus 로고    scopus 로고
    • R. Kruse, D. Nauck, Choosing appropriate neuro-fuzzy models, Proceedings of the EUFIT’94, Aachen, 1994, pp. 552–557.
  • 17
    • 85120127828 scopus 로고    scopus 로고
    • R. Kruse, D. Nauck, Learning methods for fuzzy systems, Proceedings of the 3rd German GI-Workshop ‘Neuro-Fuzzy Systeme’, Darmstadt, Germany, 1995.
  • 18
    • 85120123302 scopus 로고    scopus 로고
    • R. Kruse, D. Nauck , NEFCLASS—a neuro-fuzzy approach for the classification of data, Proceedings of the 1995 ACM Symposium on Applied Computing, Nashville.
  • 19
    • 85120136177 scopus 로고    scopus 로고
    • K.J. Lang, M.J. Witbrock, Learning to tell two spirals apart, Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann, 1988.
  • 21
    • 0026366218 scopus 로고
    • Neural-network-based fuzzy logic control and decision system
    • C.T. Lin C.S.G. Lee Neural-network-based fuzzy logic control and decision system IEEE Trans. Comput. 40 12 1991 1320 1336
    • (1991) IEEE Trans. Comput. , vol.40 , Issue.12 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 22
    • 0001913511 scopus 로고
    • Fuzzy adaptive learning control network with on-line neural learning
    • C.T. Lin C. Lin C.S.G. Lee Fuzzy adaptive learning control network with on-line neural learning Fuzzy Sets and Systems 71 1995 25 45
    • (1995) Fuzzy Sets and Systems , vol.71 , pp. 25-45
    • Lin, C.T.1    Lin, C.2    Lee, C.S.G.3
  • 23
    • 85120129935 scopus 로고    scopus 로고
    • C. Marsala, Apprentissage inductif en présence de données imprécises: construction et utilisation d'arbres de décision flous, Thèse de Doctorat de l'Universit’ de Paris, 1998.
  • 24
    • 0029270928 scopus 로고
    • Fuzzy logic systems for engineering: a tutorial
    • J.M. Mendel Fuzzy logic systems for engineering: a tutorial Proc. IEEE 83 3 1995 345 377
    • (1995) Proc. IEEE , vol.83 , Issue.3 , pp. 345-377
    • Mendel, J.M.1
  • 25
    • 85120125979 scopus 로고    scopus 로고
    • D. Nauck, A fuzzy perceptron as a generic model for neuro-fuzzy approaches, Proceedings of the Fuzzy-Systeme’94, 2nd GI-Workshop, Munich, Siemens Corporation, October, 1994.
  • 26
    • 85120128665 scopus 로고    scopus 로고
    • D. Nauck, R. Kruse, Neuro-fuzzy systems for function approximation, Faculty of Computer Science, Neural and Fuzzy Systems, Otto-von-Guericke University of Magdeburg.
  • 28
    • 85120134627 scopus 로고    scopus 로고
    • J.R. Quinlan, (1993). C4.5: programs for machine learning, Morgan Kaufmann, San Mateo.
  • 29
    • 0028769579 scopus 로고
    • Fuzzy self-organizing map
    • P. Vuorimaa Fuzzy self-organizing map Fuzzy Sets and Systems 66 1994 223 231
    • (1994) Fuzzy Sets and Systems , vol.66 , pp. 223-231
    • Vuorimaa, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.