메뉴 건너뛰기




Volumn 41, Issue 11, 2000, Pages 7854-7868

Construction of multisymplectic schemes of any finite order for modified wave equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034311551     PISSN: 00222488     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.1316062     Document Type: Article
Times cited : (8)

References (18)
  • 1
    • 0003079278 scopus 로고
    • Construction of symplectic schemes for wave equations via hyperbolic functions Sinh(X), Cosh(X), Tanh(X)
    • M.-Z. Qin and W. J. Zhu, "Construction of symplectic schemes for wave equations via hyperbolic functions sinh(x), cosh(x), tanh(x)," Comput. Math. Appl. 26, 1-11 (1993).
    • (1993) Comput. Math. Appl. , vol.26 , pp. 1-11
    • Qin, M.-Z.1    Zhu, W.J.2
  • 2
    • 0003034563 scopus 로고    scopus 로고
    • The symplectic method for computation of Hamiltonian system
    • edited by Y. L. Zhu and Guo Ben-Yu, in Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1987)
    • K. Feng and M. Z. Qin, "The symplectic method for computation of Hamiltonian system," in Proceedings on Numerical Methods for PDEs, edited by Y. L. Zhu and Guo Ben-Yu, in Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1987), Vol. 1297, pp. 1-37.
    • Proceedings on Numerical Methods for PDEs , vol.1297 , pp. 1-37
    • Feng, K.1    Qin, M.Z.2
  • 3
    • 0000301299 scopus 로고
    • A symplectic difference scheme for infinite dimensional Hamiltonian systems
    • C. W. Li and M. Z. Qin, "A symplectic difference scheme for infinite dimensional Hamiltonian systems," J. Comput. Math. 6, 164-174 (1988).
    • (1988) J. Comput. Math. , vol.6 , pp. 164-174
    • Li, C.W.1    Qin, M.Z.2
  • 4
    • 34249766017 scopus 로고
    • Symplectic integration of Hamiltonian wave equations
    • R. Mclachlan, "Symplectic integration of Hamiltonian wave equations," Numer. Math. 66, 465-492 (1994).
    • (1994) Numer. Math. , vol.66 , pp. 465-492
    • Mclachlan, R.1
  • 5
    • 0001686631 scopus 로고    scopus 로고
    • Symplectic finite difference approximations of the nonlinear Klein-Gordon equation
    • D. B. Duncan, "Symplectic finite difference approximations of the nonlinear Klein-Gordon equation," SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 34, 1742-1760 (1996).
    • (1996) SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. , vol.34 , pp. 1742-1760
    • Duncan, D.B.1
  • 6
    • 0042137401 scopus 로고    scopus 로고
    • Multisymplectic structures and wave propagation
    • TH. J. Bridges, "Multisymplectic structures and wave propagation," Math. Proc. Cambridge Philos. Soc. 121, 147-190 (1997).
    • (1997) Math. Proc. Cambridge Philos. Soc. , vol.121 , pp. 147-190
    • Bridges, TH.J.1
  • 7
    • 0034687898 scopus 로고    scopus 로고
    • Multisymplectic Runge-Kutta methods for Hamiltonian wave equations
    • S. Reich, "Multisymplectic Runge-Kutta methods for Hamiltonian wave equations," J. Chem. Phys. 157, 473-499 (2000).
    • (2000) J. Chem. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 9
    • 0002956967 scopus 로고
    • A multisymplectic framework for classical field theory and the calculus of variations
    • edited by M. Francaviglia
    • M. J. Gotay, "A multisymplectic framework for classical field theory and the calculus of variations," Mechanics, Analysis and Geometry 200 Years after Lagrange, edited by M. Francaviglia 1991, pp. 203-230.
    • (1991) Mechanics, Analysis and Geometry 200 Years after Lagrange , pp. 203-230
    • Gotay, M.J.1
  • 10
    • 0032476963 scopus 로고    scopus 로고
    • Multisymplectic geometry, variational integrators, and nonlinear PDEs
    • J. E. Marsden, G. W. Patrick, and S. Shkoller, "Multisymplectic geometry, variational integrators, and nonlinear PDEs," Commun. Math. Phys. 199, 351-395 (1998).
    • (1998) Commun. Math. Phys. , vol.199 , pp. 351-395
    • Marsden, J.E.1    Patrick, G.W.2    Shkoller, S.3
  • 12
    • 0000566698 scopus 로고
    • Backward analysis of numerical integrators and symplectic methods
    • E. Hairer, "Backward analysis of numerical integrators and symplectic methods," Ann. Numer. Math. 1, 107-132 (1994).
    • (1994) Ann. Numer. Math. , vol.1 , pp. 107-132
    • Hairer, E.1
  • 13
    • 0039966698 scopus 로고
    • Formal power series and numerical algorithms for dynamical systems
    • Hangzhou, China, Series on Applied Mathematics, edited by Y. Chan and Z.-C. Shi
    • F. Kang, "Formal power series and numerical algorithms for dynamical systems," Proceedings of the International Conference on Scientific Computation, Hangzhou, China, Series on Applied Mathematics, 1991, edited by Y. Chan and Z.-C. Shi, Vol. 1, pp. 28-35.
    • (1991) Proceedings of the International Conference on Scientific Computation , vol.1 , pp. 28-35
    • Kang, F.1
  • 14
    • 49549156305 scopus 로고
    • The modified equation approach to the stability and accuracy of finite-difference methods
    • R. F. Warming and B. J. Hyett, "The modified equation approach to the stability and accuracy of finite-difference methods," J. Comput. Phys. 14, 159-179 (1974).
    • (1974) J. Comput. Phys. , vol.14 , pp. 159-179
    • Warming, R.F.1    Hyett, B.J.2
  • 15
    • 0001444647 scopus 로고    scopus 로고
    • Backward error analysis for numerical integrators
    • S. Reich, "Backward error analysis for numerical integrators," SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 36, 1549-1570 (1999).
    • (1999) SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. , vol.36 , pp. 1549-1570
    • Reich, S.1
  • 16
    • 0001079967 scopus 로고
    • On correction first differential approximation of difference scheme
    • N. N. Yanenko, "On correction first differential approximation of difference scheme," Dokl. Akad. Nauk 182, 776-778 (1968).
    • (1968) Dokl. Akad. Nauk , vol.182 , pp. 776-778
    • Yanenko, N.N.1
  • 17
    • 0000094449 scopus 로고
    • The Poincare-Cartan invariant in the calculus of variations
    • P. L. Carcia, "The Poincare-Cartan invariant in the calculus of variations," Symp. Math. 14, 219-246 (1974).
    • (1974) Symp. Math. , vol.14 , pp. 219-246
    • Carcia, P.L.1
  • 18
    • 26544443735 scopus 로고
    • Symplectic approach to the theory of quantized fields. 1
    • P. L. Carcia and A. Pérez-Rendon, "Symplectic approach to the theory of quantized fields. 1," Commun. Math. Phys. 13, 24-44 (1969).
    • (1969) Commun. Math. Phys. , vol.13 , pp. 24-44
    • Carcia, P.L.1    Pérez-Rendon, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.