메뉴 건너뛰기




Volumn 33, Issue 18, 2000, Pages 3613-3626

Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034640067     PISSN: 03054470     EISSN: None     Source Type: Journal    
DOI: 10.1088/0305-4470/33/18/308     Document Type: Article
Times cited : (122)

References (17)
  • 2
    • 0000301299 scopus 로고
    • A symplectic difference scheme for infinite dimensional hamiltonian systems
    • Li C W and Qin M Z 1988 A symplectic difference scheme for infinite dimensional Hamiltonian systems J. Comput. Math. 6 164-74
    • (1988) J. Comput. Math. , vol.6 , pp. 164-174
    • Li, C.W.1    Qin, M.Z.2
  • 3
    • 0011938820 scopus 로고    scopus 로고
    • A symplectic difference scheme for the PDEs
    • Qin M Z 1997 A symplectic difference scheme for the PDEs AMS/IP Studies in Advanced Mathematics vol 3, pp 349-54
    • (1997) AMS/IP Studies in Advanced Mathematics , vol.3 , pp. 349-354
    • Qin, M.Z.1
  • 4
    • 0025249534 scopus 로고
    • Multi-stage symplectic schemes of two kinds of hamiltonian systems of wave equations
    • Qin M Z 1990 Multi-stage symplectic schemes of two kinds of Hamiltonian systems of wave equations Comput. Math. Appl. 19 51-62
    • (1990) Comput. Math. Appl. , vol.19 , pp. 51-62
    • Qin, M.Z.1
  • 5
    • 0003079278 scopus 로고
    • Construction of symplectic schemes for wave equation via hyperbolic functions sinh(x), cosh(x) and tanh(x)
    • Qin M Z and Zhu W J 1993 Construction of symplectic schemes for wave equation via hyperbolic functions sinh(x), cosh(x) and tanh(x) Comput. Math. Appl. 26 1-11
    • (1993) Comput. Math. Appl. , vol.26 , pp. 1-11
    • Qin, M.Z.1    Zhu, W.J.2
  • 6
    • 34249766017 scopus 로고
    • Symplectic integration of Hamiltonian wave equations
    • McLachlan R 1994 Symplectic integration of Hamiltonian wave equations Numer. Math. 66 465-92
    • (1994) Numer. Math. , vol.66 , pp. 465-492
    • McLachlan, R.1
  • 7
    • 0013039699 scopus 로고    scopus 로고
    • Multisymplectic geometry, covariant Hamiltonians, and water waves
    • Marsden J E and Shkoller S 1999 Multisymplectic geometry, covariant Hamiltonians, and water waves Math. Proc. Camb. Phil. Soc. 125
    • (1999) Math. Proc. Camb. Phil. Soc. , pp. 125
    • Marsden, J.E.1    Shkoller, S.2
  • 8
    • 0032476963 scopus 로고    scopus 로고
    • Multisymplectic geometry, variational integrators, and nonlinear PDEs
    • Marsden J E, Patrick G P and Shkoller S 1998 Multisymplectic geometry, variational integrators, and nonlinear PDEs Commun. Math. Phys. 199 351-95
    • (1998) Commun. Math. Phys. , vol.199 , pp. 351-395
    • Marsden, J.E.1    Patrick, G.P.2    Shkoller, S.3
  • 10
    • 0042137401 scopus 로고    scopus 로고
    • Multisymplectic structures and wave propagation
    • Bridges T J 1997 Multisymplectic structures and wave propagation Math. Proc. Camb. Phil. Soc. 121
    • (1997) Math. Proc. Camb. Phil. Soc. , pp. 121
    • Bridges, T.J.1
  • 11
    • 33746421439 scopus 로고    scopus 로고
    • Unstable eigenvalues and the linerization about solitary waves and fronts with symmetry
    • Bridges T J and Derks G 1999 Unstable eigenvalues and the linerization about solitary waves and fronts with symmetry Proc. R. Soc. A 455 2427-69
    • (1999) Proc. R. Soc. A , vol.455 , pp. 2427-2469
    • Bridges, T.J.1    Derks, G.2
  • 12
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations
    • Reich S 2000 Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations J. Chem. Phys. 157 473-99
    • (2000) J. Chem. Phys. , vol.157 , pp. 473-499
    • Reich, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.