메뉴 건너뛰기




Volumn 186, Issue 1, 2007, Pages 670-684

A survey on symplectic and multi-symplectic algorithms

Author keywords

Conservation law; Hamiltonian system; Multi symplectic; Symplectic

Indexed keywords

COMPUTATIONAL GEOMETRY; FUNCTION EVALUATION; HAMILTONIANS; PROBLEM SOLVING;

EID: 33947200291     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2006.08.012     Document Type: Article
Times cited : (27)

References (43)
  • 2
    • 33947285360 scopus 로고    scopus 로고
    • De Vogelaere, Methods of integration which preserve the contact transformation property of the Hamiltonian equations, Report 4, Department of Mathematics, University of Notre Dame, 1956.
  • 3
    • 0020798563 scopus 로고
    • A canonical integration technique
    • Ruth R. A canonical integration technique. IEEE Trans. Nucl. Sci. 30 (1983) 2669-2671
    • (1983) IEEE Trans. Nucl. Sci. , vol.30 , pp. 2669-2671
    • Ruth, R.1
  • 4
    • 0002779128 scopus 로고
    • On difference schemes and symplectic geometry
    • Feng K. (Ed), Science Press, Beijing
    • Feng K. On difference schemes and symplectic geometry. In: Feng K. (Ed). Proceeding of the 1984 Beijing Symposium on D.D. (1985), Science Press, Beijing 42-58
    • (1985) Proceeding of the 1984 Beijing Symposium on D.D. , pp. 42-58
    • Feng, K.1
  • 7
    • 0001299089 scopus 로고
    • Difference schemes for Hamiltonian formalism and symplectic geometry
    • Feng K. Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comput. Math. 4 (1986) 279-289
    • (1986) J. Comput. Math. , vol.4 , pp. 279-289
    • Feng, K.1
  • 8
    • 0002961720 scopus 로고
    • Construct of canonical difference schemes for Hamiltonian formalism via generating functions
    • Feng K., Wu H., Qin M., and Wang D. Construct of canonical difference schemes for Hamiltonian formalism via generating functions. J. Comput. Math. 7 (1989) 71-96
    • (1989) J. Comput. Math. , vol.7 , pp. 71-96
    • Feng, K.1    Wu, H.2    Qin, M.3    Wang, D.4
  • 9
    • 0000301299 scopus 로고
    • A symplectic difference scheme for the infinite-dimensional Hamiltonian system
    • Li C., and Qin M. A symplectic difference scheme for the infinite-dimensional Hamiltonian system. J. Comput. Math. 6 (1988) 164-174
    • (1988) J. Comput. Math. , vol.6 , pp. 164-174
    • Li, C.1    Qin, M.2
  • 10
    • 0040114714 scopus 로고
    • Recent progress in the theory and application of symplectic integrators
    • Yoshida H. Recent progress in the theory and application of symplectic integrators. Celest. Mech. Dynam. Astronom. 56 (1993) 27-43
    • (1993) Celest. Mech. Dynam. Astronom. , vol.56 , pp. 27-43
    • Yoshida, H.1
  • 12
    • 0012152740 scopus 로고
    • Symplectic geometry and computational Hamilton mechanics
    • Qin M. Symplectic geometry and computational Hamilton mechanics. Mech. Practice 6 (1990) 1-20
    • (1990) Mech. Practice , Issue.6 , pp. 1-20
    • Qin, M.1
  • 13
    • 0025249534 scopus 로고
    • Multi-stage symplectic schemes of two kinds of Hamiltonian systems of wave equations
    • Qin M. Multi-stage symplectic schemes of two kinds of Hamiltonian systems of wave equations. Comput. Math. Appl. 19 (1990) 51-62
    • (1990) Comput. Math. Appl. , vol.19 , pp. 51-62
    • Qin, M.1
  • 14
    • 0026682206 scopus 로고
    • Construction of higher order symplectic schemes by composition
    • Qin M., and Zhu W. Construction of higher order symplectic schemes by composition. Computing 47 (1991) 309-321
    • (1991) Computing , vol.47 , pp. 309-321
    • Qin, M.1    Zhu, W.2
  • 15
    • 0001005075 scopus 로고
    • Construction of higher order symplectic integrators
    • Yoshida H. Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262-268
    • (1990) Phys. Lett. A , vol.150 , pp. 262-268
    • Yoshida, H.1
  • 16
    • 33947210657 scopus 로고    scopus 로고
    • History and present state of symplectic algorithm
    • Zeng W., and Kong L. History and present state of symplectic algorithm. J. Huaqiao Univ. 25 (2004) 113-117
    • (2004) J. Huaqiao Univ. , vol.25 , pp. 113-117
    • Zeng, W.1    Kong, L.2
  • 17
    • 33746314863 scopus 로고
    • Symplectic integration of Hamiltonian system
    • Channell P.J., and Scovel C. Symplectic integration of Hamiltonian system. Nonlinearity 3 (1990) 231-259
    • (1990) Nonlinearity , vol.3 , pp. 231-259
    • Channell, P.J.1    Scovel, C.2
  • 18
    • 0011615763 scopus 로고
    • Canonical Runge-Kutta methods
    • Lasagni F.M. Canonical Runge-Kutta methods. Z. Angew. Math. Phys. 39 (1988) 952-953
    • (1988) Z. Angew. Math. Phys. , vol.39 , pp. 952-953
    • Lasagni, F.M.1
  • 19
    • 0038976122 scopus 로고
    • Runge-Kutta schemes for Hamiltonian systems
    • Sanz-Serna J.M. Runge-Kutta schemes for Hamiltonian systems. BIT 28 (1988) 877-883
    • (1988) BIT , vol.28 , pp. 877-883
    • Sanz-Serna, J.M.1
  • 20
    • 0037747984 scopus 로고
    • On the canonicity of mappings that can be generated by methods of Runge-Kutta type for integrating systems x″ = -∂U/∂x
    • Suris Yu.B. On the canonicity of mappings that can be generated by methods of Runge-Kutta type for integrating systems x″ = -∂U/∂x. Zh. Vychisl. Mat. i Mat. Fiz. 29 (1989) 202-211
    • (1989) Zh. Vychisl. Mat. i Mat. Fiz. , vol.29 , pp. 202-211
    • Suris, Yu.B.1
  • 21
    • 0001433845 scopus 로고
    • Symplectic partitioned Runge-Kutta methods
    • Sun G. Symplectic partitioned Runge-Kutta methods. J. Comput. Math. 11 (1993) 365-372
    • (1993) J. Comput. Math. , vol.11 , pp. 365-372
    • Sun, G.1
  • 22
    • 84968505707 scopus 로고
    • Explicit canonical methods for Hamiltonian systems
    • Okunbor D., and Skeel R.D. Explicit canonical methods for Hamiltonian systems. Math. Comput. 59 (1992) 439-455
    • (1992) Math. Comput. , vol.59 , pp. 439-455
    • Okunbor, D.1    Skeel, R.D.2
  • 23
    • 0043164835 scopus 로고    scopus 로고
    • Symplectic and multi-symplectic schemes with the simple finite element method
    • Liu Z., Bai Y., Li Q., and Wu K. Symplectic and multi-symplectic schemes with the simple finite element method. Phys. Lett. A 314 (2003) 443-455
    • (2003) Phys. Lett. A , vol.314 , pp. 443-455
    • Liu, Z.1    Bai, Y.2    Li, Q.3    Wu, K.4
  • 24
    • 1042284864 scopus 로고    scopus 로고
    • A structure preserving discretization of nonlinear Schrödinger equation
    • Huang M., Ru Q., and Gong C. A structure preserving discretization of nonlinear Schrödinger equation. J. Comput. Math. 17 (1999) 553-560
    • (1999) J. Comput. Math. , vol.17 , pp. 553-560
    • Huang, M.1    Ru, Q.2    Gong, C.3
  • 25
    • 0032476963 scopus 로고    scopus 로고
    • Multi-symplectic geometry, variational integrators, and nonlinear PDEs
    • Marsden J., Patrick G.W., and Shkoller S. Multi-symplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199 (1998) 351-395
    • (1998) Commun. Math. Phys. , vol.199 , pp. 351-395
    • Marsden, J.1    Patrick, G.W.2    Shkoller, S.3
  • 26
    • 0042137401 scopus 로고    scopus 로고
    • Multi-symplectic structures and wave propagation
    • Bridges T.J. Multi-symplectic structures and wave propagation. Math. Proc. Camb. Phil. Soc. 121 (1997) 147-190
    • (1997) Math. Proc. Camb. Phil. Soc. , vol.121 , pp. 147-190
    • Bridges, T.J.1
  • 27
    • 0030695841 scopus 로고    scopus 로고
    • A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities
    • Bridges T.J. A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. R. Soc. Lond. A 453 (1997) 1365-1395
    • (1997) Proc. R. Soc. Lond. A , vol.453 , pp. 1365-1395
    • Bridges, T.J.1
  • 28
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • Bridges T.J., and Recih S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284 (2001) 184-193
    • (2001) Phys. Lett. A , vol.284 , pp. 184-193
    • Bridges, T.J.1    Recih, S.2
  • 29
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta method for Hamiltonian wave equations
    • Reich S. Multi-symplectic Runge-Kutta method for Hamiltonian wave equations. J. Comput. Phys. 157 (2001) 473-499
    • (2001) J. Comput. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 30
    • 0043187304 scopus 로고    scopus 로고
    • Finite volume method for multi-symplectic PDEs
    • Reich S. Finite volume method for multi-symplectic PDEs. BIT 40 (2000) 559-582
    • (2000) BIT , vol.40 , pp. 559-582
    • Reich, S.1
  • 31
    • 0039152065 scopus 로고    scopus 로고
    • Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations
    • Bridges T.J., and Reich S. Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations. Physica D 152-153 (2001) 491-504
    • (2001) Physica D , vol.152-153 , pp. 491-504
    • Bridges, T.J.1    Reich, S.2
  • 32
    • 84867955067 scopus 로고    scopus 로고
    • A novel numerical approach to simulating nonlinear Schrödinger equation with variable coefficients
    • Hong J., and Liu Y. A novel numerical approach to simulating nonlinear Schrödinger equation with variable coefficients. Appl. Math. Lett. 16 (2002) 759-765
    • (2002) Appl. Math. Lett. , vol.16 , pp. 759-765
    • Hong, J.1    Liu, Y.2
  • 33
    • 31244436460 scopus 로고    scopus 로고
    • Multisymplecticity of centered box discretizations for Hamiltonian PDEs with m ≥ 2 space dimensions
    • Hong J., and Qin M. Multisymplecticity of centered box discretizations for Hamiltonian PDEs with m ≥ 2 space dimensions. Appl. Math. Lett. 15 (2002) 1005-1011
    • (2002) Appl. Math. Lett. , vol.15 , pp. 1005-1011
    • Hong, J.1    Qin, M.2
  • 34
    • 0000228722 scopus 로고
    • On coupled Klein-Gordon-Schrödinger equations
    • Tsutsumim F. On coupled Klein-Gordon-Schrödinger equations. J. Math. Anal. Appl. 66 (1978) 358-378
    • (1978) J. Math. Anal. Appl. , vol.66 , pp. 358-378
    • Tsutsumim, F.1
  • 35
    • 0005727359 scopus 로고    scopus 로고
    • Multi-symplectic Fourier pseudo-spectral method for the nonlinear Schrödinger equation
    • Chen J., and Qin M. Multi-symplectic Fourier pseudo-spectral method for the nonlinear Schrödinger equation. Electron. Trans. Numer. Anal. 12 (2001) 193-204
    • (2001) Electron. Trans. Numer. Anal. , vol.12 , pp. 193-204
    • Chen, J.1    Qin, M.2
  • 36
    • 20444496902 scopus 로고    scopus 로고
    • High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation
    • Wang Y., and Wang B. High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation. Appl. Math. Comput. 166 (2005) 608-632
    • (2005) Appl. Math. Comput. , vol.166 , pp. 608-632
    • Wang, Y.1    Wang, B.2
  • 37
    • 33646246487 scopus 로고    scopus 로고
    • multi-symplectic composition integrator of high order
    • Chen J., and Qin M. multi-symplectic composition integrator of high order. J. Comput. Math. 21 (2003) 647-656
    • (2003) J. Comput. Math. , vol.21 , pp. 647-656
    • Chen, J.1    Qin, M.2
  • 38
    • 33645984826 scopus 로고    scopus 로고
    • Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients
    • Hong J., Liu Y., Munthe-Kaas H., and Zanna A. Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. Appl. Numer. Math. 56 (2006) 814-843
    • (2006) Appl. Numer. Math. , vol.56 , pp. 814-843
    • Hong, J.1    Liu, Y.2    Munthe-Kaas, H.3    Zanna, A.4
  • 39
    • 26944495302 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations
    • Hong J., and Li C. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211 (2006) 448-472
    • (2006) J. Comput. Phys. , vol.211 , pp. 448-472
    • Hong, J.1    Li, C.2
  • 40
    • 0021214532 scopus 로고
    • A symmetry regularized long wave equation
    • Seyler C.E., and Fenstermmacler D.C. A symmetry regularized long wave equation. Phys. Fluid. 27 (1984) 4-7
    • (1984) Phys. Fluid. , vol.27 , pp. 4-7
    • Seyler, C.E.1    Fenstermmacler, D.C.2
  • 41
    • 33947219283 scopus 로고    scopus 로고
    • Multi-symplectic quasi-spectral method and its conservation laws for SRLW equation
    • Kong L.H., Zeng W., Liu R., and Kong L.J. Multi-symplectic quasi-spectral method and its conservation laws for SRLW equation. Chin. J. Comput. Phys. 23 (2006) 29-35
    • (2006) Chin. J. Comput. Phys. , vol.23 , pp. 29-35
    • Kong, L.H.1    Zeng, W.2    Liu, R.3    Kong, L.J.4
  • 42
    • 33947269737 scopus 로고    scopus 로고
    • Multi-symplectic scheme of SRLW equation and its conservation laws
    • Kong L.H., Zeng W., Liu R., and Kong L.J. Multi-symplectic scheme of SRLW equation and its conservation laws. J. Univ. Sci. Tech. China 35 (2005) 770-776
    • (2005) J. Univ. Sci. Tech. China , vol.35 , pp. 770-776
    • Kong, L.H.1    Zeng, W.2    Liu, R.3    Kong, L.J.4
  • 43
    • 33749505078 scopus 로고    scopus 로고
    • L. Kong, R. Liu, Z. Xu, Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.01.044.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.