-
1
-
-
33847367496
-
-
T.W. Anderson, An Introduction to Multivariate Statistical Analysis, second ed., Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1984.
-
-
-
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting and variants
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting and variants. Mach. Learning 36 1/2 (1999) 105-142
-
(1999)
Mach. Learning
, vol.36
, Issue.1-2
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0030196364
-
Stacked regressions
-
Breiman L. Stacked regressions. Mach. Learning 24 1 (1996) 49-64
-
(1996)
Mach. Learning
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman, L.1
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learning 24 2 (1996) 123-140
-
(1996)
Mach. Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0346786584
-
Arcing classifiers
-
Breiman L. Arcing classifiers. Ann. Stat. 26 (1998) 801-824
-
(1998)
Ann. Stat.
, vol.26
, pp. 801-824
-
-
Breiman, L.1
-
7
-
-
0033986060
-
The immune system as a model for pattern recognition and classification
-
Carter J.H. The immune system as a model for pattern recognition and classification. J. Am. Med. Inf. Assoc. 7 1 (2000) 28-41
-
(2000)
J. Am. Med. Inf. Assoc.
, vol.7
, Issue.1
, pp. 28-41
-
-
Carter, J.H.1
-
8
-
-
26944481912
-
Designing ensembles of fuzzy classification systems: an immune approach
-
Jacob C. (Ed), Springer, Calgary, Canada
-
Castro P., Coelho G., Caetano M., and von Zuben F. Designing ensembles of fuzzy classification systems: an immune approach. In: Jacob C. (Ed). Proceedings of the Fourth International Conference on Artificial Immune Systems (ICARIS'2005) (2005), Springer, Calgary, Canada 469-482
-
(2005)
Proceedings of the Fourth International Conference on Artificial Immune Systems (ICARIS'2005)
, pp. 469-482
-
-
Castro, P.1
Coelho, G.2
Caetano, M.3
von Zuben, F.4
-
10
-
-
71649110512
-
Artificial immune systems as a novel soft computing paradigm
-
de Castro L.N., and Timmis J. Artificial immune systems as a novel soft computing paradigm. Soft Comput. J. 7 7 (2007)
-
(2007)
Soft Comput. J.
, vol.7
, Issue.7
-
-
de Castro, L.N.1
Timmis, J.2
-
12
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learning Res. 7 (2006) 1-30
-
(2006)
J. Mach. Learning Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
13
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10 7 (1998) 1895-1923
-
(1998)
Neural Comput.
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
15
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Mach. Learning 54 (2004) 255-273
-
(2004)
Mach. Learning
, vol.54
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
17
-
-
0141921552
-
Online ensemble learning: an empirical study
-
Fern A., and Givan R. Online ensemble learning: an empirical study. Mach. Learning 53 (2003) 71-109
-
(2003)
Mach. Learning
, vol.53
, pp. 71-109
-
-
Fern, A.1
Givan, R.2
-
18
-
-
33847419507
-
-
Y. Freund, R. Schapire, Experiments with a new boosting algorithm, in: Proceedings of the 13 International Conference on Machine Learning, Bari, Italy, 1996, pp. 148-156.
-
-
-
-
20
-
-
33847370552
-
-
N. García-Pedrajas, C. Fyfe, Construction of classifier ensembles by means of artificial immune systems, J. Heuristics, in press.
-
-
-
-
21
-
-
33847355441
-
-
N. García-Pedrajas, C. Fyfe, Nonlinear "boosting" projections for ensemble construction, J. Mach. Learning Res., accepted.
-
-
-
-
23
-
-
21044454599
-
Cooperative coevolution of artificial neural network ensembles for pattern classification
-
García-Pedrajas N., Hervás-Martínez C., and Ortiz-Boyer D. Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans. Evol. Comput. 9 3 (2005) 271-302
-
(2005)
IEEE Trans. Evol. Comput.
, vol.9
, Issue.3
, pp. 271-302
-
-
García-Pedrajas, N.1
Hervás-Martínez, C.2
Ortiz-Boyer, D.3
-
24
-
-
21244465997
-
How do we evaluate artificial immune systems?
-
Garret S.M. How do we evaluate artificial immune systems?. Evol. Comput. 13 2 (2005) 145-178
-
(2005)
Evol. Comput.
, vol.13
, Issue.2
, pp. 145-178
-
-
Garret, S.M.1
-
25
-
-
78149349523
-
-
L. Hall, K. Bowyer, R. Banfield, D. Bhadoria, W. Kegelmeyer, S. Eschrich, Comparing pure parallel ensemble creation techniques against bagging, in: Third IEEE International Conference on Data Mining, Melbourne, FL, USA, 2003, pp. 533-536.
-
-
-
-
26
-
-
33847421626
-
-
E. Hart, P. Ross, Exploiting the analogy between immunology and spares distributed memories: a system for clustering non-stationary data, in: First International Conference on Artificial Immune Systems, Canterbury, UK, 2002, pp. 49-58.
-
-
-
-
28
-
-
33847415693
-
-
S. Hettich, C. Blake, C. Merz, UCI repository of machine learning databases, 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉, 1998.
-
-
-
-
29
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 8 (1998) 832-844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
30
-
-
0015956495
-
Towards a network theory of the immune system
-
Jerne K.N. Towards a network theory of the immune system. Ann. Immunol. 125C (1974) 373-389
-
(1974)
Ann. Immunol.
, vol.125 C
, pp. 373-389
-
-
Jerne, K.N.1
-
31
-
-
0034186937
-
On the algorithmic implementation of stochastic discrimination
-
Kleinberg E. On the algorithmic implementation of stochastic discrimination. IEEE Trans. Pattern Anal. Mach. Intell. 22 5 (2000) 473-490
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.5
, pp. 473-490
-
-
Kleinberg, E.1
-
32
-
-
0348151971
-
Combining classifiers: soft computing solutions
-
Pal S.K., and Pal A. (Eds), World Scientific, Singapore
-
Kuncheva L.I. Combining classifiers: soft computing solutions. In: Pal S.K., and Pal A. (Eds). Pattern Recognition: From Classical to Modern Approaches (2001), World Scientific, Singapore 427-451
-
(2001)
Pattern Recognition: From Classical to Modern Approaches
, pp. 427-451
-
-
Kuncheva, L.I.1
-
33
-
-
0034315099
-
Evolutionary ensembles with negative correlation learning
-
Liu Y., Yao X., and Higuchi T. Evolutionary ensembles with negative correlation learning. IEEE Trans. Evolutionary Comput. 4 4 (2000) 380-387
-
(2000)
IEEE Trans. Evolutionary Comput.
, vol.4
, Issue.4
, pp. 380-387
-
-
Liu, Y.1
Yao, X.2
Higuchi, T.3
-
34
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Merz C.J. Using correspondence analysis to combine classifiers. Mach. Learning 36 1 (1999) 33-58
-
(1999)
Mach. Learning
, vol.36
, Issue.1
, pp. 33-58
-
-
Merz, C.J.1
-
35
-
-
10444270597
-
Forming neural networks through efficient and adaptive coevolution
-
Moriarty D.E., and Miikkulainen R. Forming neural networks through efficient and adaptive coevolution. Evol. Comput. 4 5 (1997) 373-399
-
(1997)
Evol. Comput.
, vol.4
, Issue.5
, pp. 373-399
-
-
Moriarty, D.E.1
Miikkulainen, R.2
-
37
-
-
31144437540
-
Cixl2: a crossover operator for evolutionary algorithms based on population features
-
Ortiz-Boyer D., Hervás-Martínez C., and García-Pedrajas N. Cixl2: a crossover operator for evolutionary algorithms based on population features. J. Artif. Intell. Res. 24 (2005) 33-80
-
(2005)
J. Artif. Intell. Res.
, vol.24
, pp. 33-80
-
-
Ortiz-Boyer, D.1
Hervás-Martínez, C.2
García-Pedrajas, N.3
-
38
-
-
0024472594
-
Immune network theory
-
Perelson A. Immune network theory. Immunol. Rev. 110 (1989) 5-36
-
(1989)
Immunol. Rev.
, vol.110
, pp. 5-36
-
-
Perelson, A.1
-
39
-
-
0000926506
-
When networks disagree: ensemble methods for hybrid neural networks
-
Mammone R.J. (Ed), Chapman & Hall, London
-
Perrone M.P., and Cooper L.N. When networks disagree: ensemble methods for hybrid neural networks. In: Mammone R.J. (Ed). Neural Networks for Speech and Image Processing (1993), Chapman & Hall, London 126-142
-
(1993)
Neural Networks for Speech and Image Processing
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
40
-
-
84957007471
-
-
M. Skurichina, R.P.W. Duin, Bagging and the random subspace method for redundant feature spaces, in: J. Kittler, R. Poli (Eds.), Proceedings of the Second International Workshop on Multiple Classifier Systems MCS 2001, Cambridge, UK, 2001, pp. 1-10.
-
-
-
-
42
-
-
0034247206
-
Multiboosting: a technique for combining boosting and wagging
-
Webb G.I. Multiboosting: a technique for combining boosting and wagging. Mach. Learning 40 2 (2000) 159-196
-
(2000)
Mach. Learning
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
43
-
-
0001884644
-
Individual comparisons by ranking methods
-
Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1 (1945) 80-83
-
(1945)
Biometrics
, vol.1
, pp. 80-83
-
-
Wilcoxon, F.1
-
44
-
-
0031143030
-
A new evolutionary system for evolving artificial neural networks
-
Yao X., and Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks 8 3 (1997) 694-713
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, Issue.3
, pp. 694-713
-
-
Yao, X.1
Liu, Y.2
-
45
-
-
24644517147
-
Selective svms ensemble driven by immune clonal algorithm
-
Rothlauf F. (Ed), Springer, Berlin
-
Zhang X., Wang S., Shan T., and Jiao L. Selective svms ensemble driven by immune clonal algorithm. In: Rothlauf F. (Ed). Proceedings of EvoWorkshops (2005), Springer, Berlin 325-333
-
(2005)
Proceedings of EvoWorkshops
, pp. 325-333
-
-
Zhang, X.1
Wang, S.2
Shan, T.3
Jiao, L.4
-
46
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou Z.-H., Wu J., and Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 137 1-2 (2002) 239-253
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-253
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
|