메뉴 건너뛰기




Volumn 39, Issue 5, 1997, Pages 519-532

Bayesian neural network models for censored data

Author keywords

Bayesian analysis; Feed forward neural network; Maximum likelihood; Shrinkage; Sufficiency principle

Indexed keywords

BAYESIAN NETWORKS; MAXIMUM LIKELIHOOD ESTIMATION; NEURAL NETWORKS; PARAMETER ESTIMATION;

EID: 0031487090     PISSN: 03233847     EISSN: None     Source Type: Journal    
DOI: 10.1002/bimj.4710390502     Document Type: Article
Times cited : (12)

References (34)
  • 1
    • 0000434492 scopus 로고
    • Information and asymptotic efficiency in parametric-nonparametric models
    • BEGUN, J. M., HALL, W. J., HUANG, W. M., and WELLNER, J. A., 1983: Information and Asymptotic Efficiency in Parametric-Nonparametric Models. The Annals of Statistics 11, 432-452.
    • (1983) The Annals of Statistics , vol.11 , pp. 432-452
    • Begun, J.M.1    Hall, W.J.2    Huang, W.M.3    Wellner, J.A.4
  • 2
    • 0018668029 scopus 로고
    • Linear regression with censored data
    • BUCKELY, J. and JAMES, I., 1979: Linear regression with censored data. Biometrika 66, 429-436.
    • (1979) Biometrika , vol.66 , pp. 429-436
    • Buckely, J.1    James, I.2
  • 5
    • 0025970213 scopus 로고
    • Classification of ultrasonic image texture by statistical discriminate analysis of neural network
    • DAPONTE, J. S. and SHERMAN, P., 1991: Classification of ultrasonic image texture by statistical discriminate analysis of Neural Network. Comput. Med. Image. Graph. 15, 3-9.
    • (1991) Comput. Med. Image. Graph. , vol.15 , pp. 3-9
    • Daponte, J.S.1    Sherman, P.2
  • 7
    • 84952107777 scopus 로고
    • A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model
    • DUMOUCHEL, W. and JONES, B., 1994: A Simple Bayesian Modification of D-Optimal Designs to Reduce Dependence on an Assumed Model. Technometrics 36, 37-47.
    • (1994) Technometrics , vol.36 , pp. 37-47
    • Dumouchel, W.1    Jones, B.2
  • 8
    • 84950651862 scopus 로고
    • The efficiency of Cox's likelihood function for censored data
    • EFRON, B., 1977: The efficiency of Cox's likelihood function for censored data. Journal of the American Statistical Association 72, 557-565.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 557-565
    • Efron, B.1
  • 10
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • FARAGGI, D. and SIMON, R., 1995a: A Neural Network Model for Survival Data. Statistics in Medicine 14, 73-82.
    • (1995) Statistics in Medicine , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 11
    • 0041122933 scopus 로고
    • The maximum likelihood neural network as a statistical classification problem
    • FARAGGI, D. and SIMON, R., 1995b: The Maximum Likelihood Neural Network as a Statistical Classification Problem. Journal of Statistical Planning and Inference 46, 93-104.
    • (1995) Journal of Statistical Planning and Inference , vol.46 , pp. 93-104
    • Faraggi, D.1    Simon, R.2
  • 12
    • 0026449851 scopus 로고
    • On learning the derivatives of an unknown mapping with multilayer feedforward networks
    • GALLANT, A. R. and WHITE, H., 1991: On Learning the Derivatives of an Unknown Mapping With Multilayer Feedforward Networks. Neural Networks 5, 129-138.
    • (1991) Neural Networks , vol.5 , pp. 129-138
    • Gallant, A.R.1    White, H.2
  • 13
  • 14
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • GEMAN, S., BIENSTOCK, E., and DOURSAT, R., 1992: Neural Networks and the Bias/Variance Dilemma. Neural Computation 4, 1-58.
    • (1992) Neural Computation , vol.4 , pp. 1-58
    • Geman, S.1    Bienstock, E.2    Doursat, R.3
  • 16
    • 0000268209 scopus 로고
    • Protein structure prediction with a neural network
    • HOLLEY, L. H. and KARPLUS, M., 1989: Protein Structure Prediction with a Neural Network. Proc. Natl. Acad. Sci., U.S.A. 86, 152-156.
    • (1989) Proc. Natl. Acad. Sci., U.S.A. , vol.86 , pp. 152-156
    • Holley, L.H.1    Karplus, M.2
  • 17
    • 0024363909 scopus 로고
    • Bayesian neural network
    • KONONENKO, I., 1989: Bayesian Neural Network. Biological Cybernetics 61, 361-370.
    • (1989) Biological Cybernetics , vol.61 , pp. 361-370
    • Kononenko, I.1
  • 20
    • 0001025418 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MACKAY, D. J. C., 1992: A Practical Bayesian Framework for Backpropagation Networks. Neural Computation 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 22
    • 0025729598 scopus 로고
    • Artificial intelligence in the diagnosis of low back pain
    • MANN, N. H. I. and BROWN, M. D., 1991: Artificial Intelligence in the Diagnosis of Low Back Pain. Orthop. Clin. North Am. 22, 303-314.
    • (1991) Orthop. Clin. North Am. , vol.22 , pp. 303-314
    • Mann, N.H.I.1    Brown, M.D.2
  • 25
    • 0017709268 scopus 로고
    • The asymptotic information in censored survival data
    • OAKES, D., 1977: The asymptotic Information in Censored Survival Data. Biometrika 64, 441-448.
    • (1977) Biometrika , vol.64 , pp. 441-448
    • Oakes, D.1
  • 26
    • 0003794792 scopus 로고
    • Experiments on learning by back-propagation
    • Carnegie Mellon University, Pittsburgh, PA 15213
    • PLAUT, D. C., NOWLAN, S. J., and HINTON, G. E., 1986: Experiments on Learning by Back-Propagation. Technical Report CMU-CS-86-126, Carnegie Mellon University, Pittsburgh, PA 15213.
    • (1986) Technical Report CMU-CS-86-126
    • Plaut, D.C.1    Nowlan, S.J.2    Hinton, G.E.3
  • 27
    • 0018694153 scopus 로고
    • Hazard rate models with covariates
    • PRENTICE, R. L. and KALBFLEISCH, J. D., 1979: Hazard rate models with covariates. Biometrics 35, 25-39.
    • (1979) Biometrics , vol.35 , pp. 25-39
    • Prentice, R.L.1    Kalbfleisch, J.D.2
  • 28
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • O. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall (Eds.): Chapman and Hall, London
    • RIPLEY, B. D., 1994: Statistical Aspects of Neural Networks. In: O. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall (Eds.): Networks and Chaos - Statistical and Probabilistic Aspects. Chapman and Hall, London.
    • (1994) Networks and Chaos - Statistical and Probabilistic Aspects
    • Ripley, B.D.1
  • 29
    • 0003444646 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart: MIT Press, Cambridge, MA
    • RUMELHART, D. E., HINTON, G. E., and WILLIAMS, R. J., 1986: Learning Internal Representations by error Propagation. In: D. E. Rumelhart: Parallel Distributed processing - Vol. 1. MIT Press, Cambridge, MA, 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce english text
    • SEJNOWSKI, T. J. and ROSENBERG, L. R., 1987: Parallel networks that learn to pronounce english text. Complex Systems 1, 145-168.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, L.R.2
  • 31
    • 0001960793 scopus 로고
    • A large sample study of Cox's regression model
    • TSIATIS, A., 1981: A Large Sample Study of Cox's Regression Model. Annals of Statistics 9, 93-108.
    • (1981) Annals of Statistics , vol.9 , pp. 93-108
    • Tsiatis, A.1
  • 34
    • 0027201423 scopus 로고
    • Constructive neural networks as estimator of Bayesian discriminant functions
    • YEUNG, D.-Y., 1993: Constructive Neural Networks as Estimator of Bayesian Discriminant Functions. Pattern Recognition 26, 189-204.
    • (1993) Pattern Recognition , vol.26 , pp. 189-204
    • Yeung, D.-Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.